Article

Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution.

Cell Biology and Genetics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
Genes & Development (Impact Factor: 12.64). 04/1995; 9(6):639-49. DOI: 10.1101/gad.9.6.639
Source: OAI

ABSTRACT Progression through the cell cycle is catalyzed by cyclin-dependent kinases (CDKs) and is negatively controlled by CDK inhibitors (CDIs). We have isolated a new member of the p21CIP1/p27KIP1 CDI family and named it p57KIP2 to denote its apparent molecular mass and higher similarity to p27KIP1. Three distinct p57 cDNAs were cloned that differ at the start of their open reading frames and correspond to messages generated by the use of distinct splice acceptor sites. p57 is distinguished from p21 and p27 by its unique domain structure. Four distinct domains follow the heterogeneous amino-terminal region and include, in order, a p21/p27-related CDK inhibitory domain, a proline-rich (28% proline) domain, an acidic (36% glutamic or aspartic acid) domain, and a carboxy-terminal nuclear targeting domain that contains a putative CDK phosphorylation site and has sequence similarity to p27 but not to p21. Most of the acidic domain consists of a novel, tandemly repeated 4-amino acid motif. p57 is a potent inhibitor of G1- and S-phase CDKs (cyclin E-cdk2, cyclin D2-cdk4, and cyclin A-cdk2) and, to lesser extent, of the mitotic cyclin B-Cdc2. In mammalian cells, p57 localizes to the nucleus, associates with G1 CDK components, and its overexpression causes a complete cell cycle arrest in G1 phase. In contrast to the widespread expression of p21 and p27 in human tissues, p57 is expressed in a tissue-specific manner, as a 1.5-kb species in placenta and at lower levels in various other tissues and a 7-kb mRNA species observed in skeletal muscle and heart. The expression pattern and unique domain structure of p57 suggest that this CDI may play a specialized role in cell cycle control.

0 Followers
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beckwith-Wiedemann syndrome (BWS) is an imprinting-related human disease that is characterized by macrosomia, macroglossia, abdominal wall defects, and variable minor features. BWS is caused by several genetic/epigenetic alterations, such as loss of methylation at KvDMR1, gain of methylation at H19-DMR, paternal uniparental disomy of chromosome 11, CDKN1C mutations, and structural abnormalities of chromosome 11. CDKN1C is an imprinted gene with maternal preferential expression, encoding for a cyclin-dependent kinase (CDK) inhibitor. Mutations in CDKN1C are found in 40 % of familial BWS cases with dominant maternal transmission and in ~5 % of sporadic cases. In this study, we searched for CDKN1C mutations in 37 BWS cases that had no evidence for other alterations. We found five mutations—four novel and one known—from a total of six patients. Four were maternally inherited and one was a de novo mutation. Two frame-shift mutations and one nonsense mutation abolished the QT domain, containing a PCNA-binding domain and a nuclear localization signal. Two missense mutations occurred in the CDK inhibitory domain, diminishing its inhibitory function. The above-mentioned mutations were predicted by in silico analysis to lead to loss of function; therefore, we strongly suspect that such anomalies are causative in the etiology of BWS.
    Genes & genomics 04/2013; 35(2). DOI:10.1007/s13258-013-0079-3 · 0.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is necessary to use algorithms to analyze gene expression data from DNA microarrays, such as in clustering and machine-learning. Previously, we developed the knowledge-based fuzzy adaptive resonance theory (KB-FuzzyART), a clustering algorithm suitable for analyzing gene expression data, to find clues for identifying gene networks. Leaf primordia form around the shoot apical meristem, which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many regulatory genes that specify such patterning have been identified. Analysis by the KB-FuzzyART and subsequent molecular and genetic analyses previously showed that ASYMMETRIC LEAVES1 (AS1) and AS2 repress the expression of some abaxial-determinant genes, such as AUXIN RESPONSE FACTOR3 (ARF3)/ETTIN (ETT) and ARF4, which are responsible for defects in leaf adaxial-abaxial polarity in as1 and as2. In the present study, genetic analysis revealed that ARF3/ETT and ARF4 were regulated by modifier genes, BOBBER1 (BOB1) and ELONGATOR3 (ELO3) together with AS1-AS2. We analyzed expression arrays with as2 elo3 and as2 bob1 and extracted genes downstream of ARF3/ETT by using KB-FuzzyART and molecular analyses. The results showed that expression of Kip-related protein genes (KRPs) (for inhibitors of cyclin-dependent protein kinases) and Isopentenyltransferase gene (IPT) (for biosynthesis of cytokinin) were controlled by AS1-AS2 through ARF3/ETT and ARF4 functions, which suggests that the AS1-AS2-ETT pathway plays a critical role in controlling the cell division cycle and the biosynthesis of cytokinin around SAM to stabilize leaf development in Arabidopsis thaliana.
    Plant and Cell Physiology 02/2013; DOI:10.1093/pcp/pct027 · 4.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The members of the CIP/KIP family of cyclin-dependent kinase (CDK) inhibitory proteins (CKIs), including p57(KIP2), p27(KIP1), and p21(CIP1), block the progression of the cell cycle by binding and inhibiting cyclin/CDK complexes of the G1 phase. In addition to this well-characterized function, p57(KIP2) and p27(KIP1) have been shown to participate in an increasing number of other important cellular processes including cell fate and differentiation, cell motility and migration, and cell death/survival, both in peripheral and central nervous systems. Increasing evidence over the past few years has characterized the functions of the newest CIP/KIP member p57(KIP2) in orchestrating cell proliferation, differentiation, and migration during neurogenesis. Here, we focus our discussion on the multiple roles played by p57(KIP2) during cortical development, making comparisons to p27(KIP1) as well as the INK4 family of CKIs.
    Developmental Neurobiology 06/2012; 72(6):821-42. DOI:10.1002/dneu.20999 · 4.19 Impact Factor

Preview

Download
4 Downloads
Available from