Article

Kinetic analysis of glutathione in anchored cells with monochlorobimane

Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station 77843-4458, USA.
Cytometry 03/1995; 19(3):226-34. DOI: 10.1002/cyto.990190306
Source: PubMed

ABSTRACT A method for the measurement of intracellular glutathione content and glutathione S-transferase activity with monochlorobimane in adherent cells is described. The method involves the kinetic analysis of monochlorobimane conjugation to glutathione over a relatively short period of time. This permits extrapolation over time for determination of equilibrium fluorescence intensity (relative glutathione level) from scan intensity data that follows first-order kinetics, minimizing problems commonly associated with the use of monochlorobimane. By using measured fluorescence intensity values from glutathione standards, a suspension calibration curve was generated and, subsequently, was used to determine the photomultiplier tube saturation rate. A theoretical intracellular calibration curve was then generated to quantify glutathione content in cells. This method was also applied to study the changes in glutathione in a variety of rodent and human cell lines and in selected cocultures of cells exhibiting similar or different glutathione levels. Comparison of the glutathione levels obtained with monochlorobimane and a standard colorimetric method (GSH-400) indicated good correlation between the two methods. These studies support the use of laser cytometry for measuring intracellular glutathione with monochlorobimane as well as changes in glutathione occurring in cells that establish physical contacts with other cells. Laser cytometric analysis of glutathione in anchored cells also provides opportunities to monitor individual cellular responses to a variety of experimental manipulations, such as responses to various toxic insults or the protective effects of gap junction-mediated intercellular communication.

Download full-text

Full-text

Available from: Robert C Burghardt, Dec 23, 2014
0 Followers
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitous tripeptide glutathione (GSH) is an essential factor in many biological processes, thus its depletion has a major impact on cell function and survival. In this study, we examined regulation of GSH in cardiomyocytes under chronic oxidative stress elicited by myocardial infarction (MI). Cardiac dysfunction was induced in rats by coronary artery ligation, and experiments were conducted in myocytes isolated from non-infarcted left ventricle and septum after 6-8 weeks. Fluorescence microscopy studies using the probe monochlorobimane showed that [GSH] in myocytes from post-MI hearts was 42% less than in sham control hearts (P < 0.05). However, depleted GSH levels were normalized after 5-6 h by an insulin mimetic (bis-peroxovanadium-1,10-phenanthroline, bpV(phen); 10 micromol l(-1)) or by exogenous pyruvate (5 mmol l(-1)). The increase in [GSH] by bpV(phen) was partly inhibited by buthionine sulphoximine (BSO; 50 micromol l(-1)), a blocker of GSH synthesis, and by 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU; 100 micromol l(-1)), an inhibitor of glutathione disulphide reductase. By comparison, the effect of pyruvate was not altered by BSO but was completely blocked by BCNU. Studies using inhibitors of signalling cascades indicated that upregulation of [GSH] by bpV(phen) in myocytes from post-MI hearts was mediated by mitogen activated protein kinase/extracellular signal-regulated kinase kinase 1/2 and p38 mitogen-activated protein kinase but not by phosphatidylinositol 3-kinase. The effect of pyruvate was not altered by any kinase inhibitor tested. In cells loaded with the probe TEMPO-9-AC to monitor superoxide anion, baseline fluorescence was 2.3-fold greater in post-MI myocytes than in sham control myocytes (P < 0.05) and was markedly decreased by diphenyleneiodonium (30 micromol l(-1)), an inhibitor of NADPH oxidase, exogenous GSH (10 mmol l(-1)) or bpV(phen). In parallel studies, [GSH] in post-MI myocytes was also normalized by diphenyleneiodonium or exogenous GSH. These data show that GSH is differentially regulated by receptor tyrosine kinase-dependent and -independent agonists that maintain functional GSH levels necessary to neutralize excess generation of reactive oxygen species in the failing heart.
    Experimental physiology 04/2009; 94(7):815-24. DOI:10.1113/expphysiol.2008.046201 · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated that neuronal microtubules are exquisitely sensitive to the lipid peroxidation product 4-hydroxynonenal (HNE). The mechanism, however, by which HNE disrupts the microtubules, is not known. Sulfhydryl groups of protein-cysteines constitute main targets of HNE. Indeed, HNE is mainly detoxified by conjugation to glutathione (GSH), a reaction that leads to depletion of cellular GSH. GSH maintains protein sulfhydryl groups in the reduced form and has been implicated in the regulation of cytoskeletal function. Here, we assess what role depletion of cellular GSH plays in the HNE-induced microtubule disruption. We demonstrate that HNE and its intracellularly activated tri-ester analog, HNE(Ac)(3), cause substantial GSH depletion in Neuro2A cells. However, other compounds inducing GSH depletion had no effect on the microtubule network. Therefore, HNE-induced depletion of cellular GSH does not contribute to the HNE-induced microtubule disruption. We previously demonstrated that another main cellular target of HNE is tubulin, the core protein of microtubules containing abundant cysteines. The functional relevance of this adduction, however, had not been evaluated. Here, we demonstrate that exposure of Neuro 2A cells to HNE or HNE(Ac)(3) results in the inhibition of cytosolic taxol-induced tubulin polymerization. These and our previous observations strongly support the hypothesis that HNE-adduction to tubulin is the primary mechanism involved in the HNE-induced loss of the highly dynamic neuronal microtubule network.
    Brain Research 04/2005; 1037(1-2):90-8. DOI:10.1016/j.brainres.2004.12.027 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depletion of glutathione in the substantia nigra is one of the earliest changes observed in Parkinson's disease (PD) and could initiate dopaminergic neuronal degeneration. Nevertheless, experimental glutathione depletion does not result in preferential toxicity to dopaminergic neurons either in vivo or in vitro. Moreover, dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione depletion, possibly owing to differences in cellular glutathione peroxidase (GPx1) function. However, mesencephalic cultures from GPx1-knockout and wild-type mice were equally susceptible to the toxicity of glutathione depletion, indicating that glutathione also has GPx1-independent functions in neuronal survival. In addition, dopaminergic neurons were more resistant to the toxicity of both glutathione depletion and treatment with peroxides than nondopaminergic neurons regardless of their GPx1 status. To explain this enhanced antioxidant capacity, we hypothesized that tetrahydrobiopterin (BH(4)) may function as an antioxidant in dopaminergic neurons. In agreement, inhibition of BH(4) synthesis increased the susceptibility of dopaminergic neurons to the toxicity of glutathione depletion, whereas increasing BH(4) levels completely protected nondopaminergic neurons against it. Our results suggest that BH(4) functions as a complementary antioxidant to the glutathione/glutathione peroxidase system and that changes in BH(4) levels may contribute to the pathogenesis of PD.
    Journal of Neurochemistry 07/2000; 74(6):2305-14. DOI:10.1046/j.1471-4159.2000.0742305.x · 4.24 Impact Factor