Article

Receptive-field properties of Q retinal ganglion cells of the cat.

Biomedical Engineering Department, Robert R. McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, USA.
Visual Neuroscience (Impact Factor: 1.68). 03/1995; 12(2):285-300. DOI: 10.1017/S0952523800007975
Source: PubMed

ABSTRACT The goal of this work was to provide a detailed quantitative description of the receptive-field properties of one of the types of rarely encountered retinal ganglion cells of cat; the cell named the Q-cell by Enroth-Cugell et al. (1983). Quantitative comparisons are made between the discharge statistics and between the spatial receptive properties of Q-cells and the most common of cat retinal ganglion cells, the X-cells. The center-surround receptive field of the Q-cell is modeled here quantitatively and the typical Q-cell is described. The temporal properties of the Q-cell receptive field were also investigated and the dynamics of the center mechanism of the Q-cell modeled quantitatively. In addition, the response vs. contrast relationship for a Q-cell at optimal spatial and temporal frequencies is shown, and Q-cells are also demonstrated to have nonlinear spatial summation somewhat like that exhibited by Y-cells, although much higher contrasts are required to reveal this nonlinear behavior. Finally, the relationship between Q-cells and Barlow and Levick's (1969) luminance units was investigated and it was found that most Q-cells could not be luminance units.

0 Followers
 · 
61 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alpha/Y-type retinal ganglion cells encode visual information with a receptive field composed of nonlinear subunits. This nonlinear subunit structure enhances sensitivity to patterns composed of high spatial frequencies. The Y-cell's subunits are the presynaptic bipolar cells, but the mechanism for the nonlinearity remains incompletely understood. We investigated the synaptic basis of the subunit nonlinearity by combining whole-cell recording of mouse Y-type ganglion cells with two-photon fluorescence imaging of a glutamate sensor (iGluSnFR) expressed on their dendrites and throughout the inner plexiform layer. A control experiment designed to assess iGluSnFR's dynamic range showed that fluorescence responses from Y-cell dendrites increased proportionally with simultaneously recorded excitatory current. Spatial resolution was sufficient to readily resolve independent release at intermingled ON and OFF bipolar terminals. iGluSnFR responses at Y-cell dendrites showed strong surround inhibition, reflecting receptive field properties of presynaptic release sites. Responses to spatial patterns located the origin of the Y-cell nonlinearity to the bipolar cell output, after the stage of spatial integration. The underlying mechanism differed between OFF and ON pathways: OFF synapses showed transient release and strong rectification, whereas ON synapses showed relatively sustained release and weak rectification. At ON synapses, the combination of fast release onset with slower release offset explained the nonlinear response of the postsynaptic ganglion cell. Imaging throughout the inner plexiform layer, we found transient, rectified release at the central-most levels, with increasingly sustained release near the borders. By visualizing glutamate release in real time, iGluSnFR provides a powerful tool for characterizing glutamate synapses in intact neural circuits.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 07/2013; 33(27):10972-85. DOI:10.1523/JNEUROSCI.1241-13.2013 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drifting gratings can modulate the activity of visual neurons at the temporal frequency of the stimulus. In order to characterize the temporal frequency modulation in the cat's ascending tectofugal visual system, we recorded the activity of single neurons in the superior colliculus, the suprageniculate nucleus, and the anterior ectosylvian cortex during visual stimulation with drifting sine-wave gratings. In response to such stimuli, neurons in each structure showed an increase in firing rate and/or oscillatory modulated firing at the temporal frequency of the stimulus (phase sensitivity). To obtain a more complete characterization of the neural responses in spatiotemporal frequency domain, we analyzed the mean firing rate and the strength of the oscillatory modulations measured by the standardized Fourier component of the response at the temporal frequency of the stimulus. We show that the spatiotemporal stimulus parameters that elicit maximal oscillations often differ from those that elicit a maximal discharge rate. Furthermore, the temporal modulation and discharge-rate spectral receptive fields often do not overlap, suggesting that the detection range for visual stimuli provided jointly by modulated and unmodulated response components is larger than the range provided by a one response component.
    PLoS ONE 08/2014; 9(8):e103557. DOI:10.1371/journal.pone.0103557 · 3.53 Impact Factor