In vitro replication of plasmids containing human c-myc DNA.

Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435.
Journal of Molecular Biology (Impact Factor: 3.96). 02/1995; 245(2):92-109. DOI: 10.1006/jmbi.1994.0010
Source: PubMed

ABSTRACT A chromosomal replication initiation zone was previously mapped in cell cultures to the 5' flanking DNA of the human c-myc gene. We have used an in vitro system to examine the replication of a plasmid, pNeo.Myc-2.4, containing 2.4 kb of the c-myc initiation zone. In vitro, pNeo.Myc-2.4 generated high levels of DpnI-resistant DNA above background incorporation into control plasmids. pNeo.Myc-2.4 replicated semiconservatively to produce supercoiled and relaxed plasmid monomers, and replicative intermediates. [32P]dCMP incorporated into pNeo.Myc-2.4 appeared in Okazaki fragments and low molecular weight strands which matured to full length plasmid DNA, whereas [32P]dCMP incorporated into control plasmids appeared as continuous smears on denaturing gels. Other assays also distinguished the processive replication of pNeo.Myc-2.4 from the dispersive labeling of control plasmids. A pNeo.Myc-2.4 replication time course showed a clear preference for initiation within a restriction fragment containing the c-myc DNA. Two-dimensional electrophoresis revealed that a restriction fragment bearing the c-myc origin zone generated an arc characteristic of replicative intermediates containing a central replication bubble, while vector fragments in the plasmid generated arcs of forked intermediates. Replication bubbles visualized by electron microscopy were centered within the replication initiation zone, approximately 1.4 kb upstream of c-myc promoter P1. Okazaki fragments radiolabeled during in vitro replication showed a switch in the asymmetry of template preference within the initiation zone identified by electron microscopy, two-dimensional electrophoresis and early labeling. These data show that bidirectional, semiconservative replication can originate preferentially in vitro in the 5' flanking DNA of the c-myc gene, and that replicative intermediates present at low levels can be distinguished from molecules generated by competing, repair-type processes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA replication initiation sites and initiation frequencies over 12.5 kb of the human c-myc locus, including 4.6 kb of new 5′ sequence, were determined based on short nascent DNA abundance measured by competitive polymerase chain reaction using 21 primer sets. In previous measurements, no comparative quantitation of nascent strand abundance was performed, and distinction of major from minor initiation sites was not feasible. Two major initiation sites were identified in this study. One predominant site has been located at ∼0.5 kb upstream of exon 1 of the c-myc gene, and a second new major site is located in exon 2. The site in exon 2 has not been previously identified. In addition, there are other sites that may act as less frequently used initiation sites, some of which may correspond to sites in previous reports. Furthermore, a comparison of the abundance of DNA replication intermediates over this same region of the c-myc locus between HeLa and normal skin fibroblast (NSF) cells indicated that the relative distribution was very similar, but that nascent strand abundance in HeLa cells was approximately twice that in NSF relative to the abundance at the lamin B2 origin. This increased activity at initiation sites in the c-myc locus may mainly be influenced by regulators at higher levels in transformed cells like HeLa. J. Cell. Biochem. 78:442–457, 2000. © 2000 Wiley-Liss, Inc.
    Journal of Cellular Biochemistry 09/2000; 78(3):442-457. DOI:10.1002/1097-4644(20000901)78:33.0.CO;2-1 · 3.37 Impact Factor
  • Advances in Cancer Research 01/1996; 70:95-144. DOI:10.1016/S0065-230X(08)60873-8 · 4.26 Impact Factor
  • Source