Regulation of N-methyl-D-aspartate (NMDA) receptor function during the rearrangement of developing neuronal connections.

Department of Biology, Yale University, New Haven, CT 06511.
Progress in brain research (Impact Factor: 5.1). 02/1994; 102:277-85. DOI: 10.1016/S0079-6123(08)60546-4
Source: PubMed

ABSTRACT There is evidence from a number of studies that the molecular and biophysical properties of NMDA receptors are altered during normal development. A temporal correlation with changes in NMDA receptor efficacy and periods of synaptic plasticity has been demonstrated in several systems, suggesting that NMDA receptors have a critical function in determining periods of synaptic plasticity. Data from our laboratory demonstrate reduced NMDA sensitivity of the tectal evoked potential following chronic application of NMDA to the tadpole tectum, a treatment that may mimic a naturally occurring mechanism for limiting neuronal plasticity to certain stages of development. Our analysis of the expression pattern of mRNA coding for various glutamate receptor subunits in the rat retinocollicular system establishes that differential regulation of NMDA receptor subunits at the mRNA level could be a molecular basis for changes in biophysical and pharmacological properties of the NMDA receptor complex. However, even though the NMDA receptor is the best studied candidate to function as a 'plasticity switch', there are large gaps in our understanding of the complete set of factors that control the ability of synapses to rearrange during development.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinotectal topography is established during development and relies on the sequential recruitment of glutamate receptors within postsynaptic tectal cells. NMDA receptors underpin plastic changes at early stages when retinal ganglion cell (RGC) terminal arbors are widespread and topography is coarse; AMPA/kainate receptors mediate fast secure neurotransmission characteristic of mature circuits once topography is refined. Here, we have examined the relative contributions of these receptors to visually evoked activity in normal adult goldfish, in which retinotectal topography is constantly adjusted to compensate for the continual neurogenesis and the addition of new RGC arbors. Furthermore, we examined animals at two stages of optic nerve regeneration. In the first, RGC arbors are widespread and receptive fields large resulting in coarse topography; in the second, RGC arbors are pruned to reduce receptive fields leading to refined topography. Antagonists were applied to the tectum during multiunit recording of postsynaptic responses. Normal goldfish have low levels of NMDA receptor-mediated activity and high levels of AMPA/kainate. When coarse topography has been restored, NMDA receptor-mediated activity is increased and that of AMPA/kainate decreased. Once topography has been refined, the balance of NMDA and AMPA/kainate receptor-mediated activity returns to normal. The data suggest that glutamatergic neurotransmission in normal adult goldfish is dual with NMDA receptors fine-tuning topography and AMPA receptors allowing stable synaptic function. Furthermore, the normal operation of both receptors allows a response to injury in which the balance can be transiently reversed to restore topography and vision.
    Experimental Neurology 11/2005; 195(2):391-9. DOI:10.1016/j.expneurol.2005.05.015 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because nitric oxide (NO) is involved in the development and refinement of axonal projections and synapses, it is of interest to know if developmental alcohol exposures affect NO producing neurons. Pregnant rats were fed artificial liquid diet throughout gestation as the only fluid or caloric source. The diet for experimental dams contained ethanol (6.7% v/v) while the pair-fed diet for control dams contained isocaloric maltose-dextrin instead of ethanol. This ethanol diet regime is known to produce peak blood alcohol concentrations of approximately 140 mg%. Cells stained histochemically for nitric oxide synthase (NOS) were counted at postnatal day 15 (P15) and 35 (P35) in cross-sections of the stratum griseum superficiale (SGS) of the superior colliculus (SC) and in the dorsolateral column of the periaqueductal gray (dlPAG). Compared to control tissues, alcohol caused the following effects: In the SC, the areal density of NOS+ neurons was decreased 24% at P15 but a similar decrease in means at P35 was not statistically significant (P=0.10); soma size was unaffected at either P15 or P35. In the dlPAG, both the areal density and the total number of NOS+ neurons per section were unaffected at P15 but were decreased at P35 (33% and 37% decreases); soma size was unaffected at either P15 or P35. The decrease in NOS+ neurons in the SC at P15 could be expected to have a negative impact on the refinement of neuronal connections while the decreases in NOS+ neurons in the dlPAG at P35 likely represent more permanent effects that could alter the function of that nucleus.
    Alcohol 11/2000; 22(2):75-84. DOI:10.1016/S0741-8329(00)00108-7 · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was designed to determine the effects of chronic neonatal exposure to the NMDA receptor antagonist phencyclidine (PCP) on [3H]MK-801 binding and on gene expression of NMDA receptor subunits in juvenile male rats. Rat pups were injected daily with PCP from day 5 to 15 and killed on day 21. [3H]MK-801 binding was measured by quantitative autoradiography. A sensitive RNase protection assay was employed to determine simultaneously the mRNA levels of NR1 subunit (comprising all different splice variants) and three NR2 subunits (NR2A-NR2C). The relative distribution profile of NMDA receptor subunits in the cerebral cortex was NR2B > NR1 > NR2A > NR2C and in the cerebellum NR2C = NR1 > NR2A = NR2B. Chronic PCP administration in postnatal rats produced significant reduction in both [3H]MK-801 binding and mRNA level of the NR2B subunit in the cerebral cortex. Expression of the other NMDA receptor subunits in the cerebral cortex did not change following the drug treatment. In the cerebellum, neither [3H]MK-801 binding nor any of the NMDA receptor subunit expression levels showed any alteration. Together, these data provide a molecular correlate for chronic postnatal PCP-induced down-regulation of [3H]MK-801 binding in rat cerebral cortex and suggest that the NR2B subunit plays an important role in developmental plasticity.
    Molecular Brain Research 10/1996; 40(2):214-20. DOI:10.1016/0169-328X(96)00051-4 · 2.00 Impact Factor