The movement of spermatozoa with helical head: theoretical analysis and experimental results

Dipartimento di Biologia, Università di Milano, Italy.
Biophysical Journal (Impact Factor: 3.83). 11/1994; 67(4):1767-74. DOI: 10.1016/S0006-3495(94)80651-4
Source: PubMed

ABSTRACT The present work is concerned with the study of the swimming of flagellated microscopic organisms with a helical head and a helical pattern of flagellar beating, such as Xenopus sperms. The theoretical approach is similar to that taken by Chang and Wu (1971) in the study of helical flagellar movement. The model used in the present study allows us to determine the velocity of propulsion (U) and the frequency of rotation of the sperm head (fh) as a function of the frequency of the wave of motion (ft) traveling along the tail. The results relative to the case of helical and planar flagellar waves are compared. Our main finding is that the helical shape of the head seems to increase the efficiency of propulsion of the spermatozoon when compared with the more commonly shaped spherical head. Experimentally measured values of fh versus U may be fitted by a linear plot whose slope is much higher than that corresponding to the case of planar flagellar beating. This fact is consistent with an effectively three-dimensional (nonplanar) movement of the flagellar tail. However, the results do not fit those predicted from a circular helix, suggesting that a different shape of the flagellar beating should be considered.

Download full-text


Available from: Giovanni Bernardini, Jun 22, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the rotational and translational velocity components of particles moving in helical motion using the frequency shift they induced to the structured light beam illuminating them. Under Laguerre-Gaussian mode illumination, a particle with a helical motion reflects light that acquires an additional frequency shift proportional to the angular velocity of rotation in the transverse plane, on top of the usual frequency shift due to the longitudinal motion. We determined both the translational and rotational velocities of the particles by switching between two modes: by illuminating with a Gaussian beam, we can isolate the longitudinal frequency shift; and by using a Laguerre-Gaussian mode, the frequency shift due to the rotation can be determined. Our technique can be used to characterize the motility of microorganisms with a full three-dimensional movement.
    Optics Express 03/2014; 22(13). DOI:10.1364/OE.22.016504 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A quantitative description of the flagellar dynamics in the procyclic T. brucei is presented in terms of stationary oscillations and traveling waves. By using digital video microscopy to quantify the kinematics of trypanosome flagellar waveforms. A theoretical model is build starting from a Bernoulli-Euler flexural-torsional model of an elastic string with internal distribution of force and torque. The dynamics is internally driven by the action of the molecular motors along the string, which is proportional to the local shift and consequently to the local curvature. The model equation is a nonlinear partial differential wave equation of order four, containing nonlinear terms specific to the Korteweg-de Vries (KdV) equation and the modified-KdV equation. For different ranges of parameters we obtained kink-like solitons, breather solitons, and a new class of solutions constructed by smoothly piece-wise connected conic functions arcs (e.g. ellipse). The predicted amplitude and wavelengths are in good match with experiments. We also present the hypotheses for a step-wise kinematical model of swimming of procyclic African trypanosome.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, for the first time in fish spermatozoa, we describe the precise chronology of motility initiation of sterlet (sturgeon) sperm from completely immotile flagella to regular full wave propagation. The successive activation steps were investigated by high-speed video microscopy, using specific experimental situation, where sperm motility initiation was delayed in time up to several seconds (10 ± 2.68 seconds). Starting from fully immotile, the flagellum shows some trembling for a brief period, soon followed by appearance of the first real bend (so-called "principal bend") with a large wave amplitude 4.28 ± 0.65 μm, then by the "reverse bend," the latter presenting a lower (P < 0.05) wave amplitude (1.14 ± 0.32 μm). This couple of first bends formed at the basal region begins to propagate toward the flagellar tip but gradually fades when reaching the midflagellum, wherein consequently the sperm cell remains nonprogressive. This behavior repeats several times until a stage where the amplitude of the reverse bend gradually reaches a value similar that of the principal bend: The larger amplitude of this couple of bends finally leads to sustain a real "takeoff" of the sperm cell characterized by a full flagellar wave propagation generating an active forward displacement similar to that occurring during regular steady state motility (several seconds after activation). Starting from the earliest stages of motility initiation, the wave propagation along the flagellum and formation of new waves proceeded in a helical manner leading to a 3-dimensional rotation of the whole spermatozoon. Eventually, we estimated that the time period needed from the activation signal (contact with fresh water) to full wave propagation ranges from 0.4 to 1.2 seconds. Copyright © 2015 Elsevier Inc. All rights reserved.
    Theriogenology 02/2015; 84(1). DOI:10.1016/j.theriogenology.2015.02.011 · 1.85 Impact Factor