Article

Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene.

Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038.
Development (Impact Factor: 6.27). 01/1995; 120(12):3367-77.
Source: PubMed

ABSTRACT We show that the Drosophila gene diaphanous is required for cytokinesis. Males homozygous for the dia1 mutation are sterile due to a defect in cytokinesis in the germline. Females trans-heterozygous for dia1 and a deficiency are sterile and lay eggs with defective eggshells; failure of cytokinesis is observed in the follicle cell layer. Null alleles are lethal. Death occurs at the onset of pupation due to the absence of imaginal discs. Mitotic figures in larval neuroblasts were found to be polyploid, apparently due to a defect in cytokinesis. The predicted 123 x 10(3) M(r) protein contains two domains shared by the formin proteins, encoded by the limb deformity gene in the mouse. These formin homology domains, which we have termed FH1 and FH2, are also found in Bni1p, the product of a Saccharomyces cerevisiae gene required for normal cytokinesis in diploid yeast cells.

Full-text

Available from: Steven A Wasserman, Apr 17, 2015
0 Followers
 · 
49 Views
  • The Journal of Cell Biology 03/2000; 148(5):843-848. · 9.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Drosophila wing is covered by an array of distally pointing hairs that has served as a key model system for studying planar cell polarity (PCP). The adult cuticular hairs are formed in the pupae from cell extensions that contain extensive actin filaments and microtubules. The importance of the actin cytoskeleton for hair growth and morphogenesis is clear from the wide range of phenotypes seen in mutations in well-known actin regulators. Formin proteins promote the formation of long actin filaments of the sort thought to be important for hair growth. We report here that the formin encoding diaphanous (dia) gene plays a key role in hair morphogenesis. Both loss of function mutations and the expression of a constitutively active Dia led to cells forming both morphologically abnormal hairs and multiple hairs. The conserved frizzled (fz)/starry night (stan) PCP pathway functions to restrict hair initiation and activation of the cytoskeleton to the distal most part of wing cells. It also ensures the formation of a single hair per cell. Our data suggest that the localized inhibition of Dia activity may be part of this mechanism. We found the expression of constitutively active Dia greatly expands the region for activation of the cytoskeleton and that dia functions antagonistically with multiple wing hairs (mwh), the most downstream member of the fz/stan pathway. Further we established that purified fragments of Dia and Mwh could be co-immunoprecipitated suggesting the genetic interaction could reflect a direct physical interaction.
    PLoS ONE 03/2015; 10(3):e0115623. DOI:10.1371/journal.pone.0115623 · 3.53 Impact Factor
  • The Journal of Cell Biology 01/1999; 145(1):167-181. DOI:10.1083/jcb.145.1.167 · 9.69 Impact Factor