The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family.

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.
Cell (Impact Factor: 33.12). 03/1995; 80(3):389-99.
Source: PubMed

ABSTRACT The cytoplasmic C-terminus of Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1) is essential for B lymphocyte growth transformation and is now shown to interact with a novel human protein (LMP1-associated protein 1 [LAP1]). LAP1 is homologous to a murine protein, tumor necrosis factor receptor-associated factor 2 (TRAF2), implicated in growth signaling from the p80 TNFR. A second novel protein (EBI6), induced by EBV infection, is the human homolog of a second murine TNFR-associated protein (TRAF1). LMP1 expression causes LAP1 and EBI6 to localize to LMP1 clusters in lymphoblast plasma membranes, and LMP1 coimmunoprecipitates with these proteins. LAP1 binds to the p80 TNFR, CD40, and the lymphotoxin-beta receptor, while EBI6 associates with the p80 TNFR. The interaction of LMP1 with these TNFR family-associated proteins is further evidence for their role in signaling and links LMP1-mediated transformation to signal transduction from the TNFR family.

  • Source
    PLoS Pathogens 03/2015; 11(3):e1004656. DOI:10.1371/journal.ppat.1004656 · 8.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Latent Epstein-Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
    01/2015; 47(1):e131. DOI:10.1038/emm.2014.84
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant expression of miR-10b has been described in many cancers but remains unexplored in nasopharyngeal carcinoma (NPC). Therefore, we aimed to study the miR-10b expression level in 43 NPC biopsies collected from Tunisian patients and three NPC xenografts. Then, we investigated the correlation between miR-10b expression and its upstream regulators LMP1/Twist1 as well as its adjacent gene HoxD4. We showed that miR-10b was significantly up-regulated in NPC biopsies compared to non-tumor nasopharyngeal tissues (fold change 153; p = 0.004) and associated with advanced clinical stage and young age at diagnosis (p = 0.005 and p = 0.011, respectively). In addition, over-expression of miR-10b was positively associated with the transcription factor Twist1 as well as the EBV oncoprotein LMP1 (fold change 6.32; p = 0.014, fold change 6.58; p = 0.01 respectively). Furthermore, higher level of miR-10b was observed in tumors with simultaneous expression of LMP1 and Twist1, compared to those expressing only Twist1 (fold change 2.49; p = 0.033). Meanwhile, the analysis of the link between miR-10b and its neighbor gene HoxD4 did not show any significant correlation (Fisher test p = 0.205; Mann-Whitney test p = 0.676). This study reports the first evidence of miR-10b over-expression in NPC patients. Furthermore, our findings can support hsa-miR-10b gene regulation through LMP1/Twist1 in NPC malignancy.
    Tumor Biology 01/2015; DOI:10.1007/s13277-014-3022-6 · 2.84 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014