Effects of physiologic waveform variability in triggered MR imaging: theoretical analysis.

Department of Medical Biophysics, University of Western Ontario, Canada.
Journal of Magnetic Resonance Imaging (Impact Factor: 2.79). 11/1994; 4(6):853-67. DOI: 10.1002/jmri.1880040618
Source: PubMed

ABSTRACT One of the assumptions inherent in most forms of triggered magnetic resonance (MR) imaging is that the pulsatile waveform (be it cardiac, respiratory, or some other) is purely periodic. In reality, the periodicity condition is rarely met. Physiologic waveform variability may lead to image artifacts and errors in velocity or volume flow rate estimates. The authors analyze the effects of physiologic waveform variability in triggered MR imaging. They propose that this variability be treated as a modulation of the underlying motion waveform. This report concentrates on amplitude modulation of the velocity waveform, which results in amplitude and phase modulation of the transverse magnetization. Established Fourier and modulation theory and the recently described principles of (k,t)-space were used to derive the appearance of physiologic waveform variability artifacts in triggered MR images and to predict errors in time-averaged and instantaneous velocity estimates that may result from such motion effects, including effects such as ghost overlap. Simulations and experimental results are provided to confirm the theory.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge of human blood-flow waveforms is required for in vitro investigations and numerical modelling. Parameters of interest include: velocity and flow waveform shapes, inter- and intra-subject variability and frequency content. We characterized the blood-velocity waveforms in the left and right common carotid arteries (CCAs) of 17 normal volunteers (24 to 34 years), analysing 3560 cardiac cycles in total. Instantaneous peak-velocity (Vpeak) measurements were obtained using pulsed-Doppler ultrasound with simultaneous collection of ECG data. An archetypal Vpeak waveform was created using velocity and timing parameters at waveform feature points. We report the following timing (post-R-wave) and peak-velocity parameters: cardiac interbeat interval (T(RR)) = 0.917 s (intra-subject standard deviation = +/- 0.045 s); cycle-averaged peak-velocity (V(CYC)) = 38.8 cm s(-1) (+/-1.5 cm s(-1)); maximum systolic Vpeak = 108.2 cm s(-1) (+/-3.8 cm s(-1)) at 0.152 s (+/-0.008 s); dicrotic notch Vpeak = 19.4 cm s(-1) (+/-2.9 cm s(-1)) at 0.398 s (+/-0.007 s). Frequency components below 12 Hz constituted 95% of the amplitude spectrum. Flow waveforms were computed from Vpeak by analytical solution of Womersley flow conditions (derived mean flow = 6.0 ml s(-1)). We propose that realistic, pseudo-random flow waveform sequences can be generated for experimental studies by varying, from cycle to cycle, only T(RR) and V(CYC) of a single archetypal waveform.
    Physiological Measurement 09/1999; 20(3):219-40. DOI:10.1088/0967-3334/20/3/301
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance imaging (MRI) has been increasingly recognized for its role in the diagnosis, treatment planning, and clinical management of patients with cardiovascular disease and has several important advantages over alternative imaging modalities, including electrocardiogram (ECG) synchronized and direct three-dimensional (3D) volumetric imaging unrestricted by imaging depth. In addition, the intrinsic sensitivity of MRI to flow, motion, and diffusion offers the unique possibility to acquire spatially registered functional information simultaneously with the morphological data within a single experiment (1–13,16–19,31,36,38). As a result, flow-sensitive MRI techniques, also known as phase contrast (PC) MRI, provide noninvasive methods for the accurate and quantitative assessment of blood flow or tissue motion. Characterizations of the dynamic components of blood flow and cardiovascular function provide insight into normal and pathological physiology and have made considerable progress (14,15,20–29,35,55).
  • Source