Prospective study of risk factors for development of NIDDM in middle aged British men

Department of Public Health, Royal Free Hospital School of Medicine, London.
BMJ Clinical Research (Impact Factor: 14.09). 04/1995; 310(6979):560-4. DOI: 10.1136/bmj.310.6979.560
Source: PubMed


To determine the risk factors for noninsulin dependent diabetes in a cohort representative of middle aged British men.
Prospective study.
7735 men aged 40-59, drawn from one group practice in each of 24 towns in Britain. Known and probable cases of diabetes at screening (n = 158) were excluded.
Non-insulin dependent diabetes (doctor diagnosed) over a mean follow up period of 12.8 years.
There were 194 new cases of non-insulin dependent diabetes. Body mass index was the dominant risk factor for diabetes, with an age adjusted relative risk (upper fifth to lower fifth) of 11.6; 95% confidence interval 5.4 to 16.8. Men engaged in moderate levels of physical activity had a substantially reduced risk of diabetes, relative to the physically inactive men, after adjustment for age and body mass index (0.4; 0.2 to 0.7), an association which persisted in full multivariate analysis. A nonlinear relation between alcohol intake and diabetes was observed, with the lowest risk among moderate drinkers (16-42 units/week) relative to the baseline group of occasional drinkers (0.6; 0.4 to 1.0). Additional significant predictors of diabetes in multivariate analysis included serum triglyceride concentration, high density lipoprotein cholesterol concentration (inverse association), heart rate, uric acid concentration, and prevalent coronary heart disease.
These findings emphasise the interrelations between risk factors for non-insulin dependent diabetes and coronary heart disease and the potential value of an integrated approach to the prevention of these conditions based on the prevention of obesity and the promotion of physical activity.

Download full-text


Available from: Ivan J Perry, Oct 08, 2015
50 Reads
  • Source
    • "A wide range of risk factors for diabetes have been proposed, including age, ethnicity, family history, intra-uterine growth, childhood health and obesity and, later in life, BMI or waist circumference and physical activity, although the results sometimes have been inconsistent [5-11]. The role of tobacco smoking is unclear [12], with some studies finding an indirect effect of smoking on the development of glucose intolerance [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Socioeconomic circumstances in childhood and early adulthood may influence the later onset of chronic disease, although such research is limited for type 2 diabetes and its risk factors at the different stages of life. The main aim of the present study is to examine the role of childhood social position and later inflammatory markers and health behaviours in developing type 2 diabetes at older ages using a pathway analytic approach. Methods Data on childhood and adult life circumstances of 2,994 men and 4,021 women from English Longitudinal Study of Ageing (ELSA) were used to evaluate their association with diabetes at age 50 years and more. The cases of diabetes were based on having increased blood levels of glycated haemoglobin and/or self-reported medication for diabetes and/or being diagnosed with type 2 diabetes. Father’s job when ELSA participants were aged 14 years was used as the measure of childhood social position. Current social characteristics, health behaviours and inflammatory biomarkers were used as potential mediators in the statistical analysis to assess direct and indirect effects of childhood circumstances on diabetes in later life. Results 12.6 per cent of participants were classified as having diabetes. A disadvantaged social position in childhood, as measured by father’s manual occupation, was associated at conventional levels of statistical significance with an increased risk of type 2 diabetes in adulthood, both directly and indirectly through inflammation, adulthood social position and a risk score constructed from adult health behaviours including tobacco smoking and limited physical activity. The direct effect of childhood social position was reduced by mediation analysis (standardised coefficient decreased from 0.089 to 0.043) but remained statistically significant (p = 0.035). All three indirect pathways made a statistically significantly contribution to the overall effect of childhood social position on adulthood type 2 diabetes. Conclusions Childhood social position influences adult diabetes directly and indirectly through inflammatory markers, adulthood social position and adult health behaviours.
    BMC Public Health 05/2014; 14(1):505. DOI:10.1186/1471-2458-14-505 · 2.26 Impact Factor
  • Source
    • "The relationship between the amount of alcohol ingestion and risk of T2DM has been examined in relatively few studies. Several studies have suggested that low to moderate alcohol ingestion increased insulin sensitivity, which might provide protecting against the development of T2DM [1] [20] [26]. On the other hand, chronic heavy drinking was thought to be a risk factor for T2DM [4] [32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic alcohol consumption contributes to the development of type 2 diabetes mellitus (T2DM) while decreasing the level of brain-derived neurotrophic factor (BDNF). BDNF may be an important regulator of glucose metabolism, so it may be associated with an increased risk for T2DM in alcoholism. We evaluated the association of chronic heavy alcohol exposure, T2DM and BDNF level. Ten week-old type 2 diabetic OLETF rats and non-diabetic LETO rats of similar weight were used. The rats were randomized by weight into four treatment groups: (1) OLETF-Ethanol (O-E, n=13), (2) OLETF-Control (O-C, n=15), (3) LETO-Ethanol (L-E, n=11), and (4) LETO-Control (L-C, n=14). The ethanol groups were fed an isocaloric liquid diet containing ethanol while the control groups were fed with the same diet containing maltose-dextran over a 6-week period using a pair-feeding control model in order to regulate different caloric ingestion. After 6 weeks of feeding, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and BDNF levels were analyzed. Prior to IP-GTT, the mean glucose levels in the O-E, O-C, L-E, and L-C groups were 90.38±12.84, 102.13±5.04, 95.18±6.43, and 102.36±4.43mg/dL, respectively. Thirty minutes after intraperitoneal injection, the mean glucose levels were 262.62±63.77, 229.07±51.30, 163.45±26.63, and 156.64±34.42mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (p<0.05). One hundred twenty minutes after intraperitoneal injection, the mean glucose levels were 167.38±45.37, 121.20±18.54, 106.73±6.94, and 104.57±9.49mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (p<0.01). The difference in mean glucose levels between the O-E group and O-C group was still significant even after adjusting for time (p<0.05). Mean BDNF levels were 405.95±326.16, 618.23±462.15, 749.18±599.93, and 1172.00±839.17pg/mL, respectively; mean BDNF level in the O-E group was significantly lower than the L-C group (p<0.05). In conclusion, the results of the present study suggest that chronic heavy alcohol ingestion may aggravate T2DM and may possibly lower BDNF level.
    Neuroscience Letters 10/2010; 487(2):149-52. DOI:10.1016/j.neulet.2010.10.011 · 2.03 Impact Factor
  • Source
    • "In the current study, serum TG was a strong predictor of incident diabetes in both genders; independent of the other risk factors. The association of fasting TG with incident diabetes has been documented previously [14,15]. However, this was reported largely when TG levels were pooled with additional risk factors for diabetes or cardiovascular disease [16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dyslipidemia is a risk factor for incident type 2 diabetes; however, no study has specifically assessed the lipid ratios (i.e. total cholesterol (TC)/high density lipoprotein cholesterol (HDL-C) and triglyceride (TG)/HDL-C) as predictors of diabetes. We aimed to compare the independent association between the different lipid measures with incident diabetes over a median follow up of 6.4 years in Iranian men and women. The study population consisted of 5201 non diabetic (men = 2173, women = 3028) subjects, aged > or =20 years. The risk factor adjusted odds ratios (ORs) for diabetes were calculated for every 1 standard deviation (SD) change in TC, log-transformed TG, HDL-C, non-HDL-C, TC/HDL-C and log-transformed TG/HDL-C using multivariate logistic regression analysis. Receiver operator characteristic (ROC) curve analysis was used to define the points of the maximum sum of sensitivity and specificity (MAXss) of each lipid measure as a predictor of diabetes. We found 366 (146 men and 220 women) new diabetes cases during follow-up. The risk-factor-adjusted ORs for a 1 SD increase in TG, TC/HDL-C and TG/HDL-C were 1.23, 1.27 and 1.25 in men; the corresponding risks in females were 1.36, 1.14, 1.39 respectively (all p < 0.05, except TC/HDL-C in females which was marginally significant, p = 0.07). A 1 SD increase of HDL-C only in women decreased the risk of diabetes by 25% [0.75(0.64-0.89)]. In both genders, there was no difference in the discriminatory power of different lipid measures to predict incident diabetes in the risk factor adjusted models (ROC approximately 82%). TG cutoff values of 1.98 and 1.66 mmol/l; TG/HDL-C cutoff values of 4.7 and 3.7, in men and women, respectively, TC/HDL-C cutoff value of 5.3 in both genders and HDL-C cutoff value of 1.18 mmol/l in women yielded the MAXss for defining the incidence of diabetes. TC/HDL-C and TG/HDL-C showed similar performance for diabetes prediction in men population however; among women TG/HDL-C highlighted higher risk than did TC/HDL-C, although there was no difference in discriminatory power. Importantly, HDL-C had a protective effect for incident diabetes only among women.
    Lipids in Health and Disease 08/2010; 9(1):85. DOI:10.1186/1476-511X-9-85 · 2.22 Impact Factor
Show more