Determination of low glomerular filtration rate using iohexol clearance.

Department of Diagnostic Radiology, University of Lund, Malmo General Hospital, Sweden.
Investigative Radiology (Impact Factor: 4.45). 07/1994; 29 Suppl 2:S234-5. DOI: 10.1097/00004424-199406001-00079
Source: PubMed
  • Source
    Basic Nephrology and Acute Kidney Injury, 03/2012; , ISBN: 978-953-51-0139-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In older adults, current equations to estimate glomerular filtration rate (GFR) are not validated and may misclassify elderly persons in terms of their stage of chronic kidney disease. To derive the Berlin Initiative Study (BIS) equation, a novel estimator of GFR in elderly participants. Cross-sectional. Data were split for analysis into 2 sets for equation development and internal validation. Random community-based population of a large insurance company. 610 participants aged 70 years or older (mean age, 78.5 years). Iohexol plasma clearance measurement as gold standard. GFR, measured as the plasma clearance of the endogenous marker iohexol, to compare performance of existing equations of estimated GFR with measured GFR of the gold standard; estimation of measured GFR from standardized creatinine and cystatin C levels, sex, and age in the learning sample; and comparison of the BIS equations (BIS1: creatinine-based; BIS2: creatinine- and cystatin C-based) with other estimating equations and determination of bias, precision, and accuracy in the validation sample. The new BIS2 equation yielded the smallest bias followed by the creatinine-based BIS1 and Cockcroft-Gault equations. All other equations considerably overestimated GFR. The BIS equations confirmed a high prevalence of persons older than 70 years with a GFR less than 60 mL/min per 1.73 m2 (BIS1, 50.4%; BIS2, 47.4%; measured GFR, 47.9%). The total misclassification rate for this criterion was smallest for the BIS2 equation (11.6%), followed by the cystatin C equation 2 (15.1%) proposed by the Chronic Kidney Disease Epidemiology Collaboration. Among the creatinine-based equations, BIS1 had the smallest misclassification rate (17.2%), followed by the Chronic Kidney Disease Epidemiology Collaboration equation (20.4%). There was no validation by an external data set. The BIS2 equation should be used to estimate GFR in persons aged 70 years or older with normal or mild to moderately reduced kidney function. If cystatin C is not available, the BIS1 equation is an acceptable alternative. Kuratorium für Dialyse und Nierentransplatation (KfH) Foundation of Preventive Medicine.
    Annals of internal medicine 10/2012; 157(7):471-81. DOI:10.7326/0003-4819-157-7-201210020-00003 · 16.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Equations to estimate GFR have not been well validated in the elderly and may misclassify persons with chronic kidney disease (CKD). We measured GFR and compared the performance of the Modification of Diet in Renal Disease (MDRD), the Chronic Kidney Disease-Epidemiology Collaboration (CKD-Epi) and the Berlin Initiative Study (BIS) equations based on creatinine and/or cystatin C in octogenarians and nonagenarians. Using cross-sectional analysis we assessed 95 very elderly persons (mean 85 years) living in the community. GFR was measured by iohexol (mGFR) and compared with estimates using six equations: MDRD, CKD-Epi_creatinine, CKD-Epi_cystatin, CKD-Epi_creatinine-cystatin, BIS_creatinine and BIS_creatinine-cystatin. Mean mGFR was 55 (range,19-86) ml/min/1.73 m2. Bias was smaller with the CKD-Epi_creatinine-cystatin and the CKD-Epi_creatinine equations (-4.0 and 1.7 ml/min/1.73 m2). Accuracy (percentage of estimates within 30% of mGFR) was greater with the CKD-Epi_creatinine-cystatin, BIS_creatinine-cystatin and BIS_creatinine equations (85%, 83% and 80%, respectively). Among the creatinine-based equations, the BIS_creatinine had the greatest accuracy at mGFR < 60 ml/min/1.73 m2 and the CKD-Epi_creatinine was superior at higher GFRs (79% and 90%, respectively). The CKD-Epi_creatinine-cystatin, BIS_creatinine-cystatin and CKD-Epi_cystatin equations yielded the greatest areas under the receiver operating characteristic curve at GFR threshold = 60 ml/min/1.73 m2 (0.88, 0.88 and 0.87, respectively). In participants classified based on the BIS_creatinine, CKD-Epi_cystatin, or BIS_creatinine-cystatin equations, the CKD-Epi_creatinine-cystatin equation tended to improve CKD classification (net reclassification index: 12.7%, p = 0.18; 6.7%, p = 0.38; and 15.9%; p = 0.08, respectively). GFR-estimating equations CKD-Epi_creatinine-cystatin and BIS_creatinine-cystatin showed better accuracy than other equations using creatinine or cystatin C alone in very elderly persons. The CKD-Epi_creatinine-cystatin equation appears to be advantageous in CKD classification. If cystatin C is not available, both the BIS_cr equation and the CKD-Epi_cr equation could be used, although at mGFR < 60 ml/min/1.73 m2, the BIS_cr equation seems to be the best alternative.
    BMC Nephrology 12/2013; 14(1):265. DOI:10.1186/1471-2369-14-265 · 1.52 Impact Factor