Article

Identification of an amino acid substitution in human alpha 1 Na,K-ATPase which confers differentially reduced affinity for two related cardiac glycosides.

Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Ohio 45267-0524.
Journal of Biological Chemistry (Impact Factor: 4.65). 09/1994; 269(39):24120-6.
Source: PubMed

ABSTRACT The ouabain-resistant cell line H1C1 displays a 30-fold differential of reduced sensitivity to the structurally related cardiac glycosides digoxin and digitoxin (Baker, R. M. (1976) in Biogenesis and Turnover of Membrane Macromolecules (Cook, J.S., ed) pp. 93-103, Raven Press, New York). Since these ligand congeners differ only by the presence of a hydroxyl group at C-12 of digoxin we predicted that the H1C1 phenotype must reflect a mutation which alters the binding site of the cardiac glycoside receptor (Na,K-ATPase). Complementary DNA encoding the alpha 1 Na,K-ATPase was prepared from H1C1 cell total RNA by reverse transcription-coupled polymerase chain reaction and these cDNAs were cloned. Sequence analysis of the reverse transcriptase-polymerase chain reaction clones revealed several independent isolates containing a G > A transition at nucleotide 332 of the propeptide coding sequence, generating the amino acid substitution C108Y. The ability of this substitution to confer differential sensitivity for digoxin and digitoxin was tested and confirmed by expressing a human alpha 1 C108Y-Na,K-ATPase in wild type HeLa cells and assaying for inhibition of cell growth and inhibition of Na,K-ATPase activity. Phenylalanine or alanine substitutions of this cysteine also confer this pattern of ligand discrimination. Ouabain-resistant Na,K-ATPase substitutions, at positions other than Cys-108 failed to exhibit differential sensitivity indicating that this ligand discrimination is unique to Cys-108 substitutions rather than a general property of cardiac glycoside-resistant mutants. It is proposed that differential resistance of the C108Y receptor for these ligands is a consequence of altering two features of the ligand-receptor interaction; one, a disruption of a common hydrogen bond resulting in general loss of affinity for cardiac glycosides and the other, formation of a new H-bond between the C-12 hydroxyl of digoxin and the receptor, specifically augmenting the stability of this ligand-receptor complex.

0 Bookmarks
 · 
99 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the monarch butterfly (Danaus plexippus) being famous for its adaptations to the defensive traits of its milkweed host plants, little is known about the macroevolution of these traits. Unlike most other animal species, monarchs are largely insensitive to cardenolides, because their target site, the sodium pump (Na(+) /K(+) -ATPase), has evolved amino acid substitutions that reduce cardenolide binding (so-called target site insensitivity, TSI). Because many, but not all, species of milkweed butterflies (Danaini) are associated with cardenolide-containing host plants, we analyzed 16 species, representing all phylogenetic lineages of milkweed butterflies, for the occurrence of TSI by sequence analyses of the Na(+) /K(+) -ATPase gene and by enzymatic assays with extracted Na(+) /K(+) -ATPase. Here we report that sensitivity to cardenolides was reduced in a stepwise manner during the macroevolution of milkweed butterflies. Strikingly, not all Danaini typically consuming cardenolides showed TSI, but rather TSI was more strongly associated with sequestration of toxic cardenolides. Thus, the interplay between bottom-up selection by plant compounds and top-down selection by natural enemies can explain the evolutionary sequence of adaptations to these toxins.
    Evolution 09/2013; 67(9):2753-61. · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous insects have independently evolved the ability to feed on plants that produce toxic secondary compounds called cardenolides and can sequester these compounds for use in their defense. We surveyed the protein target for cardenolides, the alpha subunit of the sodium pump, Na(+),K(+)-ATPase (ATPα), in 14 species that feed on cardenolide-producing plants and 15 outgroups spanning three insect orders. Despite the large number of potential targets for modulating cardenolide sensitivity, amino acid substitutions associated with host-plant specialization are highly clustered, with many parallel substitutions. Additionally, we document four independent duplications of ATPα with convergent tissue-specific expression patterns. We find that unique substitutions are disproportionately associated with recent duplications relative to parallel substitutions. Together, these findings support the hypothesis that adaptation tends to take evolutionary paths that minimize negative pleiotropy.
    Science 09/2012; 337(6102):1634-7. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Random mutagenesis with ouabain selection has been used to comprehensively scan the extracellular and transmembrane domains of the alpha1 subunit of the sheep Na+/K+-ATPase for amino acid residues that alter ouabain sensitivity. The four random mutant libraries used in this study include all of the transmembrane and extracellular regions of the molecule as well as 75% of the cytoplasmic domains. Through an extensive number of HeLa cell transfections of these libraries and subsequent ouabain selection, 24 ouabain-resistant clones have been identified. All previously described amino acids that confer ouabain resistance were identified, confirming the completeness of this random mutagenesis screen. The amino acid substitutions that confer the greatest ouabain resistance, such as Gln111-->Arg, Asp121-->Gly, Asp121-->Glu, Asn122-->Asp, and Thr797-->Ala were identified more than once in this study. This extensive survey of the extracellular and transmembrane regions of the Na+/K+-ATPase molecule has identified two new regions of the molecule that affect ouabain sensitivity: the H4 and the H10 transmembrane regions. The new substitutions identified in this study are Leu330-->Gln, Ala331-->Gly, Thr338-->Ala, and Thr338-->Asn in the H4 transmembrane domain and Phe982-->Ser in the H10 transmembrane domain. These substitutions confer modest increases in the concentration of cardiac glycoside needed to produce 50% inhibition of activity (IC50 values), 3.1-7.9-fold difference. The results of this extensive screening of the Na+/K+-ATPase alpha1 subunit to identify amino acids residues that are important in ouabain sensitivity further supports our hypothesis that the H1-H2 and H4-H8 regions represent the major binding sites for the cardiac glycoside class of drugs.
    European Journal of Biochemistry 10/1997; 248(2):488-95. · 3.58 Impact Factor

Full-text

Download
1 Download
Available from