Article

Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function.

Department of Biochemistry, McGill University, Montréal, Québec, Canada.
Nature (Impact Factor: 42.35). 11/1994; 371(6500):762-7. DOI: 10.1038/371762a0
Source: PubMed

ABSTRACT The cloning is described of two related human complementary DNAs encoding polypeptides that interact specifically with the translation initiation factor eIF-4E, which binds to the messenger RNA 5'-cap structure. Interaction of these proteins with eIF-4E inhibits translation but treatment of cells with insulin causes one of them to become hyperphosphorylated and dissociate from eIF-4E, thereby relieving the translational inhibition. The action of this new regulator of protein synthesis is therefore modulated by insulin, which acts to stimulate the overall rate of translation and promote cell growth.

1 Follower
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5'UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2β and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 03/2015; 43(7). DOI:10.1093/nar/gkv205 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanistic/mammalian target of rapamycin (mTOR) is a conserved protein kinase that controls several anabolic processes required for cell growth and proliferation. As such, mTOR has been implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes and neurodegeneration. As part of the mTOR complex 1 (mTORC1), mTOR regulates cell growth by promoting the biosynthesis of proteins, lipids and nucleic acids. Several mTORC1 substrates have been shown to regulate protein synthesis, including the eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) and the ribosomal S6 kinases (S6Ks) 1 and 2. In this work, we focus on the signalling pathways that lie both upstream and downstream of mTORC1, as well as their relevance to human pathologies. We further discuss pharmacological approaches that target mTOR and their applications for the treatment of cancer. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    Mutagenesis 03/2015; 30(2):169-176. DOI:10.1093/mutage/geu045 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Androgenetic alopecia involves the action of dihydrotestosterone (DHT) on dermal papilla cells (DPCs) that line the base of the hair follicle. However, the mechanism of DHT action is not completely understood. The effects of DHT on DPCs, regulatory cells that function in follicle growth and the hair cycle, were examined in immortalized cells derived from rat vibrissa follicles. DHT did not affect the proliferation of immortalized DPCs. However, flow cytometry analysis revealed that DHT increased cell-cycle arrest in these cells, which was accompanied by an increase in the p27(kip1) level and by decreases in cyclin E, cyclin D1, and cyclin-dependent kinase 2 levels. DHT treatment resulted in the phosphorylation and nuclear translocation of Smad2/3, a mediator of the transforming growth factor-β (TGF-β) signaling pathway, which leads to the catagen phase of the hair cycle. DHT also induced the phosphorylation and nuclear translocation of heat shock protein 27 (HSP27). Moreover, DHT decreased the levels of total and nuclear β-catenin, an important regulator of hair growth and proliferation, while lithium chloride, a glycogen synthase kinase-3β inhibitor, attenuated the DHT-induced downregulation of the β-catenin level. On the other hand, DHT increased the phosphorylation of mammalian target of rapamycin (mTOR), a regulator of proliferation, in immortalized DPCs. These results illustrate that DHT could shorten the duration of the hair growth cycle by initiating cell-cycle arrest, downregulating the β-catenin level, and upregulating the TGF-β/Smad and HSP27 level, whereas activation of mTOR by DHT could attenuate the inhibition of hair growth cycle in immortalized DPCs. Copyright © 2015 Elsevier B.V. All rights reserved.
    European journal of pharmacology 03/2015; 757. DOI:10.1016/j.ejphar.2015.03.055 · 2.68 Impact Factor