Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function.

Department of Biochemistry, McGill University, Montréal, Québec, Canada.
Nature (Impact Factor: 42.35). 11/1994; 371(6500):762-7. DOI: 10.1038/371762a0
Source: PubMed

ABSTRACT The cloning is described of two related human complementary DNAs encoding polypeptides that interact specifically with the translation initiation factor eIF-4E, which binds to the messenger RNA 5'-cap structure. Interaction of these proteins with eIF-4E inhibits translation but treatment of cells with insulin causes one of them to become hyperphosphorylated and dissociate from eIF-4E, thereby relieving the translational inhibition. The action of this new regulator of protein synthesis is therefore modulated by insulin, which acts to stimulate the overall rate of translation and promote cell growth.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pim oncogenes are highly expressed in many types of hematological and solid cancers. Pim kinases regulate the network of signaling pathways that are critical for tumorigenesis and development, making Pim kinases the attractive drug targets. Currently, two approaches have been employed in designing Pim kinase inhibitors: ATP-mimetics and non-ATP mimetics; but all target the ATP-binding pocket and are ATP-competitive. In this review, we summarize the current progress in understanding the Pim-related structure and biology, and provide insights into the binding modes of some prototypical Pim-1 inhibitors. The challenges as well as opportunities are highlighted for development of Pim kinase inhibitors as potential anticancer agents.
    Future medicinal chemistry 01/2015; 7(1):35-53. DOI:10.4155/fmc.14.145 · 4.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In sea urchins, fertilization triggers a rapid rise in protein synthesis necessary for activation of CDK1/cyclin B, the universal cell cycle regulator. It has been shown that FRAP/mTOR is required for eIF4E release from the translational repressor 4E-BP, a process that occurs upstream of de novo cyclin B synthesis. Here, we investigate whether PI 3-kinase acts independently or upstream from FRAP/mTOR in the signal transduction pathway that links fertilization to the activation of the CDK1/cyclin B complex in sea urchin egg. We found that wortmannin, a potent inhibitor of PI 3-kinase, partially inhibited the global increase in protein synthesis triggered by fertilization. Furthermore, wortmannin treatment induced partial inhibition of cyclin B translation triggered by fertilization, in correlation with an intermediate effect of the drug on 4E-BP degradation and on the dissociation of the 4E-BP/eIF4E complex induced by fertilization. Our results presented here suggest that PI 3-kinase activity is required for completion of mitotic divisions of the sea urchin embryo. Incubation of eggs with wortmannin or microinjection of wortmannin or LY 294002 affects drastically mitotic divisions induced by fertilization. In addition, we found that wortmannin treatment inhibits dephosphorylation of the tyrosine inhibitory site of CDK1. Taken together, these data suggest that PI 3-kinase acts upstream of at least two independent targets that function in the CDK1/cyclin B activation triggered by fertilization of sea urchin oocytes. We discuss the significance of these results concerning the cascade of reactions that impinge upon the activation of the CDK1/cyclin B complex that follows sea urchin oocyte fertilization.
    Experimental Cell Research 06/2004; 296(2):347-357. DOI:10.1016/S0014-4827(04)00091-6 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanistic/mammalian target of rapamycin (mTOR) is a conserved protein kinase that controls several anabolic processes required for cell growth and proliferation. As such, mTOR has been implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes and neurodegeneration. As part of the mTOR complex 1 (mTORC1), mTOR regulates cell growth by promoting the biosynthesis of proteins, lipids and nucleic acids. Several mTORC1 substrates have been shown to regulate protein synthesis, including the eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) and the ribosomal S6 kinases (S6Ks) 1 and 2. In this work, we focus on the signalling pathways that lie both upstream and downstream of mTORC1, as well as their relevance to human pathologies. We further discuss pharmacological approaches that target mTOR and their applications for the treatment of cancer. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail:
    Mutagenesis 03/2015; 30(2):169-176. DOI:10.1093/mutage/geu045 · 3.50 Impact Factor