Etoposide-induced cell cycle delay and arrest-dependent modulation of DNA topoisomerase II in small-cell lung cancer cells.

MRC Clinical Oncology and Radiotherapeutics Unit, MRC Centre, Cambridge, UK.
British Journal of Cancer (Impact Factor: 4.82). 12/1994; 70(5):914-21. DOI: 10.1038/bjc.1994.420
Source: PubMed

ABSTRACT As an approach to the rational design of combination chemotherapy involving the anti-cancer DNA topoisomerase II poison etoposide (VP-16), we have studied the dynamic changes occurring in small-cell lung cancer (SCLC) cell populations during protracted VP-16 exposure. Cytometric methods were used to analyse changes in target enzyme availability and cell cycle progression in a SCLC cell line, mutant for the tumour-suppressor gene p53 and defective in the ability to arrest at the G1/S phase boundary. At concentrations up to 0.25 microM VP-16, cells became arrested in G2 by 24 h exposure, whereas at concentrations 0.25-2 microM G2 arrest was preceded by a dose-dependent early S-phase delay, confirmed by bromodeoxyuridine incorporation. Recovery potential was determined by stathmokinetic analysis and was studied further in aphidicolin-synchronised cultures released from G1/S and subsequently exposed to VP-16 in early S-phase. Cells not experiencing a VP-16-induced S-phase delay entered G2 delay dependent upon the continued presence of VP-16. These cells could progress to mitosis during a 6-24 h period after drug removal. Cells experiencing an early S-phase delay remained in long-term G2 arrest with greatly reducing ability to enter mitosis up to 24 h after removal of VP-16. Irreversible G2 arrest was delimited by the induction of significant levels of DNA cleavage or fragmentation, not associated with overt apoptosis, in the majority of cells. Western blotting of whole-cell preparations showed increases in topoisomerase II levels (up to 4-fold) attributable to cell cycle redistribution, while nuclei from cells recovering from S-phase delay showed enhanced immunoreactivity with an anti-topoisomerase II alpha antibody. The results imply that traverse of G1/S and early S-phase in the presence of a specific topoisomerase II poison gives rise to progressive low-level trapping of topoisomerase II alpha, enhanced topoisomerase II alpha availability and the subsequent irreversible arrest in G2 of cells showing limited DNA fragmentation. We suggest that protracted, low-dose chemotherapeutic regimens incorporating VP-16 are preferentially active towards cells attempting G1/S transition and have the potential for increasing the subsequent action of other topoisomerase II-targeted agents through target enzyme modulation. Combination modalities which prevent such dynamic changes occurring would act to reduce the effectiveness of the VP-16 component.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In situ spectral analysis can be used to understand the targeting and interaction of agents in cellular compartments. A range of novel red excitable fluorescent probes, related to the anthraquinone family of anti-cancer agents, were designed for their DNA affinic properties and their ability to enter and penetrate living cells. We report on the spectral features of these probes, both in solution and bound within intact cells, to identify unique fluorescent signatures that exploit their use in bioassays on optical biochip devices. The probes demonstrated red shifted emission spectra and increased 2 photon lifetime, with minimal fluorescent enhancement, upon binding to DNA. Spectral confocal laser scanning microscopy revealed complex emission profiles representing the bound (nuclear) and unbound (cytoplasmic) fractions of the DNA probes within live interphase, mitotic and apoptotic cells. Analysis of the emission peaks encoded the spectra to provide cell compartment recognition and profiles for cells in different cell states. Sampling the entire emission spectra of these probes for cell locating, even in the presence of unbound molecules, provides good signal-to-noise in biochip devices. Furthermore, by sampling the fluorescence output at specific spectral windows we can obtain high spatial information without imaging. The technological challenge is to integrate these fluorophores and appropriate detection capacity onto an optical biochip platform with microfluidic systems for cell handling.
    Proceedings of SPIE - The International Society for Optical Engineering 03/2006; · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs.
    Stem Cell Research 02/2013; 10(3):428-441. · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug-resistant Plasmodium falciparum malaria is a major public health problem. Elevated pfmdr1 gene copy number (CN) is known to decrease parasite sensitivity to the commonly used antimalarial, mefloquine (MFQ). To understand the relationship between pfmdr1 CN and mefloquine resistance, we evaluated pfmdr1 transcript levels in three P. falciparum strains with different CN in the presence and absence of MFQ. Parasite strains with multiple pfmdr1 gene copies exhibited higher relative transcript levels than single-copy parasites, and MFQ induced pfmdr1 expression above untreated levels in all three strains evaluated. Concomitant morphology analyses of the sampled cultures revealed that MFQ treatment of synchronized ring-stage parasites induced a delay in parasite maturation through the intraerythrocytic cycle. Pfmdr1 expression peaks in the ring stage and MFQ could be causing increased transcription by delaying parasite maturation. However, pretreatment with mefloquine did not affect the artemisinin in vitro IC50. These results suggest that MFQ-induced increases in pfmdr1 expression are the direct result of the maturation delay at the ring stage but that this change in expression does not affect the antimalarial activity of artemisinin.
    Antimicrobial Agents and Chemotherapy 12/2012; · 4.57 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014