Article

Topographic organization of sensory projections to the olfactory bulb.

Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032.
Cell (Impact Factor: 31.96). 01/1995; 79(6):981-91. DOI: 10.1016/0092-8674(94)90029-9
Source: PubMed

ABSTRACT The detection of odorant receptor mRNAs within the axon terminals of sensory neurons has permitted us to ask whether neurons expressing a given receptor project their axons to common glomeruli within the olfactory bulb. In situ hybridization with five different receptor probes demonstrates that axons from neurons expressing a given receptor converge on one, or at most, a few glomeruli within the olfactory bulb. Moreover, the position of specific glomeruli is bilaterally symmetric and is constant in different individuals within a species. These data support a model in which exposure to a given odorant may result in the stimulation of a spatially restricted set of glomeruli, such that the individual odorants would be associated with specific topographic patterns of activity within the olfactory bulb.

1 Bookmark
 · 
80 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian steroids are known to act on the olfactory system. Their mode of action however is mostly unclear to date since nuclear receptors are lacking in sensory neurons. Here we used immunocytochemistry and RT-PCR to study expression and distribution of Sex Hormone Binding Globulin (SHBG) in the rat olfactory system. Single sensory cells in the olfactory mucosa and their projections in the olfactory bulb showed specific SHBG immunostaining as determined by double immunofluorescence with olfactory marker protein OMP. Larger groups of SHBG stained sensory cells occurred in the vomeronasal organ (VNO). A portion of the olfactory glomeruli in the accessory olfactory bulb showed large networks of SHBG positive nerve fibres. Some of the mitral cells showed SHBG immune fluorescence. RT-PCR revealed SHBG encoding mRNA in the olfactory mucosa, in the VNO and in the olfactory bulbs indicating intrinsic expression of the binding globulin. The VNO and its related projections within the limbic system are known to be sensitive to gonadal steroid hormones. We conclude that SHBG may be of functional importance for rapid effects of olfactory steroids on limbic functions including the control of reproductive behaviors through pheromones.
    Journal of chemical neuroanatomy 01/2014; · 1.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence indicates spatial patterning of molecular expression and physiological activities in the olfactory epithelium and primary afferent circuits of the vertebrate olfactory bulb. Because our previous studies indicate that olfactory receptors specific for amino acids and a bile acid, taurocholic acid, project to segregated coding centres in the olfactory bulb, we further examined the afferent projections and pathways of the primary neuronal responses to putative pheromones by recording the electroencephalogram from various regions of the olfactory bulb. First, using the electro-olfactogram, we determined olfactory sensitivities of six salmonid species to these odorants. Prostaglandin F2 alpha and 15-keto-prostaglandin F2 alpha were potent olfactory stimulants for all tested salmonids, except rainbow trout (Oncorhynchus mykiss). None of the salmonids responded to 17 alpha,20 beta-dihydroxy-4-pregnen-3-one. However, they were sensitive to etiocholan-3 alpha-ol-17-one glucuronide. In all salmonids examined, electroencephalograms to amino acids and taurocholic acid, applied singly or in combination, projected to two segregated regions, the lateroposterior and mid-olfactory bulb, respectively. Neither prostaglandin F2 alpha, 15-keto-prostaglandin F2 alpha nor etiocholan-3 alpha-ol-17-one glucuronide elicited electroencephalograms. These data indicate that, in salmonids, olfactory neurons responsive to amino acids and taurocholic acid project to spatially segregated regions, and thereby generated signals are encoded spatially and temporarily. The results also suggest that olfactory signals due to hormonal pheromones are processed in a manner distinct from those for amino acids and bile acids, and may possibly be mediated by extrabulbar primary olfactory fibres bypassing the bulb.
    Neuroscience 02/1998; 82(1):301-13. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most animals are endowed with an olfactory system that is essential for finding foods, avoiding predators, and locating mating partners. The olfactory system must encode the identity and intensity of behaviorally relevant stimuli in a dynamic environmental landscape. How is olfactory information represented? How is a large dynamic range of odor concentrations represented in the olfactory system? How is this representation modulated to meet the demands of different internal physiological states? Recent studies have found that sensory terminals are important targets for neuromodulation. The emerging evidence suggests that presynaptic inhibition scales with sensory input and thus provides a mechanism to increase dynamic range of odor representation. In addition, presynaptic facilitation could be a mechanism to alter behavioral responses in hungry animals. This review will focus on the GABA(B) (gamma-aminobutyric acid) receptor-mediated presynaptic inhibition, and neuropeptide-mediated presynaptic modulation in Drosophila.
    Developmental Neurobiology 06/2011; 72(1):87-99. · 4.42 Impact Factor

Full-text (2 Sources)

View
485 Downloads
Available from
Jun 1, 2014