Article

Interaction of the Dr1 inhibitory factor with the TATA binding protein is disrupted by adenovirus E1A.

Howard Hughes Medical Institute, Department of Genetics, Duke University Medical Center, Durham, NC 27710.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/1994; 91(14):6279-82. DOI: 10.1073/pnas.91.14.6279
Source: PubMed

ABSTRACT Past experiments have shown that the adenovirus E1A12S product activates the hsp70 promoter, dependent on the TATA element and dependent on N-terminal E1A sequences. Other experiments have identified a factor termed Dr1 that interacts with and inhibits the transcriptional activity of the TATA-binding protein (TBP). We now find that the E1A12S protein can disrupt the interaction of the Dr1 factor with the TATA-specific TBP factor, allowing the productive interaction of TBP with TFIIA. This E1A-mediated disruption is dependent on N-terminal sequences that are also essential for the TATA-dependent trans-activation of the hsp70 promoter. Moreover, we also find that Dr1 expression in transfected cells can inhibit transcription from the hsp70 promoter and that this can be overcome by coexpression of the wild-type E1A protein, dependent on N-terminal sequences. We conclude that the activation of hsp70 through the TATA element may be mechanistically similar to the activation of the E2 promoter via E2F, in each case involving a release of a transcription factor from an inactive complex.

0 Followers
 · 
50 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adenovirus E1A 243-amino acid protein can repress a variety of enhancer-linked viral and cellular promoters. This repression is presumed to be mediated by its interaction with and sequestration of p300, a transcriptional coactivator. Type IV 72-kDa collagenase is one of the matrix metalloproteases that has been implicated in differentiation, development, angiogenesis, and tumor metastasis. We show here that the cell type-specific transcription factor AP-2 is an important transcription factor for the activation of the type IV 72-kDa collagenase promoter and that adenovirus E1A 243-amino acid protein represses this promoter by targeting AP-2. Glutathione S-transferase-affinity chromatography studies show that the E1A protein interacts with the DNA binding/dimerization region of AP-2 and that the N-terminal amino acids of E1A protein are required for this interaction. Further, E1A deletion mutants which do not bind to p300 can repress this collagenase promoter as efficiently as the wild-type E1A protein. Because the AP-2 element is present in a variety of viral and cellular enhancers which are repressed by E1A, these studies suggest that E1A protein can repress cellular and viral promoter/enhancers by forming a complex with cellular transcription factors and that this repression mechanism may be independent of its interaction with p300.
    Proceedings of the National Academy of Sciences 04/1996; 93(7):3088-3093. DOI:10.1073/pnas.93.7.3088 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Steroid receptors are ligand-regulated transcription factors that require coactivators for efficient activation of target gene expression. The binding protein of cAMP response element binding protein (CBP) appears to be a promiscuous coactivator for an increasing number of transcription factors and the ability of CBP to modulate estrogen receptor (ER)- and progesterone receptor (PR)-dependent transcription was therefore examined. Ectopic expression of CBP or the related coactivator, p300, enhanced ER transcriptional activity by up to 10-fold in a receptor- and DNA-dependent manner. Consistent with this, the 12S E1A adenoviral protein, which binds to and inactivates CBP, inhibited ER transcriptional activity, and exogenous CBP was able to partially overcome this effect. Furthermore, CBP was able to partially reverse the ability of active ER to squelch PR-dependent transcription, indicating that CBP is a common coactivator for both receptors and that CBP is limiting within these cells. To date, the only other coactivator able to significantly stimulate receptor-dependent transcription is steroid receptor coactivator-1 (SRC-1). Coexpression of CBP and SRC-1 stimulated ER and PR transcriptional activity in a synergistic manner and indicated that these two coactivators are not functional homologues. Taken together, these data suggest that both CBP and SRC-1 may function in a common pathway to efficiently activate target gene expression.
    Proceedings of the National Academy of Sciences 08/1996; 93:8884-8888. DOI:10.1073/pnas.93.17.8884 · 9.81 Impact Factor

Full-text (3 Sources)

Download
18 Downloads
Available from
Jun 4, 2014