Wei, N., Chamovitz, D. A. & Deng, X. W. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78, 117-124

Department of Biology, Yale University, New Haven, Connecticut 06520-8104.
Cell (Impact Factor: 32.24). 08/1994; 78(1):117-24. DOI: 10.1016/0092-8674(94)90578-9
Source: PubMed


Environmental light signals are sensed by multiple families of photoreceptors and transduced by largely unknown mechanisms to regulate plant development. In this report, genetic analysis suggested that light signals perceived by both phytochromes and a blue light receptor converge to repress the action of Arabidopsis COP9 in suppressing seedling photomorphogenesis. Molecular cloning of the gene revealed that COP9 encodes a novel protein of 197 amino acids whose expression is not regulated by light. COP9 functions as a large (> 560 kDa) complex(es) that is probably subjected to light modulation. In addition, COP8 and COP11 are required for either the COP9 complex formation or its stability. Therefore COP9, together with COP8 and COP11, defines a novel signaling step in mediating light control of plant development.

16 Reads
  • Source
    • "The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) was initially identified as a repressor of constitutive photomorphogenesis in Arabidopsis [1] [2], and subsequently found in a variety of eukaryotic organisms including Saccharomyces cerevisiae [3] [4], Schizosaccharomyces pombe [5], Caenorhabditis elegans [6], Drosophila melanogaster [7] and mammals [8] [9]. The predominant biochemical function of the CSN complex is its isopeptidase catalytic activity, which deneddylates the ubiquitin-like protein NEDD8 of the Cullin–RING family of ubiquitin E3 ligases (CRLs) and thereby regulates the activity of CRLs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian COP9 signalosome is an eight-subunit (CSN1–CSN8) complex that plays essential roles in multiple cellular and physiological processes. CSN5 and CSN6 are the only two MPN (Mpr1-Pad1-N-terminal) domain-containing subunits in the complex. Unlike the CSN5 MPN domain, CSN6 lacks a metal-binding site and isopeptidase activity. Here, we report the crystal structure of the human CSN6 MPN domain. Each CSN6 monomer contains nine β sheets surrounded by three helices. Two forms of dimers are observed in the crystal structure. Interestingly, a domain swapping of β8 and β9 strands occurs between two neighboring monomers to complete a typical MPN fold. Analyses of the pseudo metal-binding motif in CSN6 suggest that the loss of two key histidine residues may contribute to the lack of catalytic activity in CSN6. Comparing the MPN domain of our CSN6 with that in the CSN complex shows that apart from the different β8–β9 conformation, they have minor conformational differences at two insertion regions (Ins-1 and Ins-2). Besides, the interacting mode of CSN6–CSN6 in our structure is distinct from that of CSN5–CSN6 in the CSN complex structure. Moreover, the functional implications for Ins-1 and Ins-2 are discussed.
    Biochemical and Biophysical Research Communications 09/2014; 453(1). DOI:10.1016/j.bbrc.2014.09.046 · 2.30 Impact Factor
  • Source
    • "The general role of CSN in the control of protein turnover results in numerous pleiotropic effects, which have an impact on processes such as hormone signaling, oxidative stress response, DNA repair, cell cycle, growth, differentiation, light signaling, and secondary metabolism (Dohmann et al. 2008; Nahlik et al. 2010; Wei et al. 1994). CSN is only essential in higher eukaryotes, whereas fungal mutant strains of the corresponding genes are viable but often show a disturbed development . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fungal genomics revealed a large potential of yet-unexplored secondary metabolites, which are not produced during vegetative growth. The discovery of novel bioactive compounds is increasingly gaining importance. The high number of resistances against established antibiotics requires novel drugs to counteract increasing human and animal mortality rates. In addition, growth of plant pathogens has to be controlled to minimize harvest losses. An additional critical issue is the post-harvest production of deleterious mycotoxins. Fungal development and secondary metabolite production are linked processes. Therefore, molecular regulators of development might be suitable to discover new bioactive fungal molecules or to serve as targets to control fungal growth, development, or secondary metabolite production. The fungal impact is relevant as well for our healthcare systems as for agriculture. We propose here to use the knowledge about mutant strains discovered in fungal model systems for a broader application to detect and explore new fungal drugs or toxins. As examples, mutant strains impaired in two conserved eukaryotic regulatory complexes are discussed. The COP9 signalosome (CSN) and the velvet complex act at the interface between development and secondary metabolism. The CSN is a multi-protein complex of up to eight subunits and controls the activation of CULLIN-RING E3 ubiquitin ligases, which mark substrates with ubiquitin chains for protein degradation by the proteasome. The nuclear velvet complex consists of the velvet-domain proteins VeA and VelB and the putative methyltransferase LaeA acting as a global regulator for secondary metabolism. Defects in both complexes disturb fungal development, light perception, and the control of secondary metabolism. The potential biotechnological relevance of these developmental fungal mutant strains for drug discovery, agriculture, food safety, and human healthcare is discussed.
    Applied Microbiology and Biotechnology 08/2014; 98(20). DOI:10.1007/s00253-014-5997-8 · 3.34 Impact Factor
  • Source
    • "CSN is evolutionarily conserved and in most species including plant and mammalian species composed of eight subunits (Chamovitz et al., 1996; Seeger et al., 1998; Wei and Deng, 1998). CSN was originally identified in plants based on mutants that display a constitutively photomorphogenic (cop) phenotype and named following the identification of the causative mutation in the cop9 mutant (Wei and Deng, 1992; Wei et al., 1994). Similarly to light-grown seedlings, cop mutants have a short hypocotyl, open cotyledons, and express light-regulated genes when grown in the dark. "
    [Show abstract] [Hide abstract]
    ABSTRACT: NEDD8, in plants and yeasts also known as RELATED TO UBIQUITIN (RUB), is an evolutionarily conserved 76 amino acid protein highly related to ubiquitin. Like ubiquitin, NEDD8 can be conjugated to and deconjugated from target proteins, but unlike ubiquitin, NEDD8 has not been reported to form chains similar to the different polymeric ubiquitin chains that have a role in a diverse set of cellular processes. NEDD8-modification is best known as a post-translational modification of the cullin subunits of cullin-RING E3 ubiquitin ligases. In this context, structural analyses have revealed that neddylation induces a conformation change of the cullin that brings the ubiquitylation substrates into proximity of the interacting E2 conjugating enzyme. In turn, NEDD8 deconjugation destabilizes the cullin RING ligase complex allowing for the exchange of substrate recognition subunits via the exchange factor CAND1. In plants, components of the neddylation and deneddylation pathway were identified based on mutants with defects in auxin and light responses and the characterization of these mutants has been instrumental for the elucidation of the neddylation pathway. More recently, there has been evidence from animal and plant systems that NEDD8 conjugation may also regulate the behavior or fate of non-cullin substrates in a number of ways. Here, the current knowledge on NEDD8 processing, conjugation and deconjugation is presented, where applicable, in the context of specific signaling pathways from plants.
    Frontiers in Plant Science 03/2014; 5:103. DOI:10.3389/fpls.2014.00103 · 3.95 Impact Factor
Show more