Evolution of transcription-regulating proteins by enzyme recruitment: molecular models for nitrogen metabolite repression and ethanol utilisation in eukaryotes.

University of Leeds, Leeds, England, United Kingdom
Gene (Impact Factor: 2.08). 10/1994; 146(2):145-58. DOI: 10.1016/0378-1119(94)90287-9
Source: PubMed

ABSTRACT Studies on the quinic acid utilisation gene (qut) cluster in Aspergillus nidulans showed that the genes encoding transcriptional activator and repressor proteins evolved by co-opting duplicated copies of genes encoding metabolic enzymes. In order to test the hypothesis that this was a general route for the genesis of regulatory proteins, the origins of the major control protein mediating nitrogen metabolite repression (an example of inter-pathway regulation) and ethanol utilisation (an example of intra-pathway regulation) in filamentous fungi were sought. The regulatory proteins mediating nitrogen metabolite repression were deduced to have originated in a duplication of genes encoding the anthranilate synthase complex which is active in the shikimate pathway. The major protein regulating ethanol utilisation was deduced to have its origin in the fusion of duplicated genes encoding the aldehyde and alcohol dehydrogenases (ALDA and ALCA). These data strongly support the view that transcriptional regulatory proteins evolve by the recruitment of functional domains provided by metabolic enzymes.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although more than 10(9) years have passed since the existence of the last universal common ancestor, proteins have yet to reach the limits of divergence. As a result, metabolic complexity is ever expanding. Identifying and understanding the mechanisms that drive and limit the divergence of protein sequence space impact not only evolutionary biologists investigating molecular evolution but also synthetic biologists seeking to design useful catalysts and engineer novel metabolic pathways. Investigations over the past 50 years indicate that the recruitment of enzymes for new functions is a key event in the acquisition of new metabolic capacity. In this review, we outline the genetic mechanisms that enable recruitment and summarize the present state of knowledge regarding the functional characteristics of extant catalysts that facilitate recruitment. We also highlight recent examples of enzyme recruitment, both from the historical record provided by phylogenetics and from enzyme evolution experiments. We conclude with a look to the future, which promises fruitful consequences from the convergence of molecular evolutionary theory, laboratory-directed evolution, and synthetic biology.
    Biochemistry 01/2014; 53(5). DOI:10.1021/bi401667f · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The suggestion that the ethanol regulatory protein from Aspergillus has its evolutionary origin in a gene fusion between aldehyde and alcohol dehydrogenase genes (Hawkins AR, Lamb HK, Radford A, Moore JD, 1994, Gene 746:145-158) has been tested by profile analysis with aldehyde and alcohol dehydrogenase family profiles. We show that the degree and kind of similarity observed between these profiles and the ethanol regulatory protein sequence is that expected from random sequences of the same composition. This level of similarity fails to support the suggested gene fusion.
    Protein Science 12/1995; 4(12):2621 - 2624. DOI:10.1002/pro.5560041221 · 2.86 Impact Factor