Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.

University of Gothenburg, Goeteborg, Västra Götaland, Sweden
New England Journal of Medicine (Impact Factor: 54.42). 11/1994; 331(14):889-95. DOI: 10.1056/NEJM199410063311401
Source: PubMed

ABSTRACT Full-thickness defects of articular cartilage in the knee have a poor capacity for repair. They may progress to osteoarthritis and require total knee replacement. We performed autologous chondrocyte transplantation in 23 people with deep cartilage defects in the knee.
The patients ranged in age from 14 to 48 years and had full-thickness cartilage defects that ranged in size from 1.6 to 6.5 cm2. Healthy chondrocytes obtained from an uninvolved area of the injured knee during arthroscopy were isolated and cultured in the laboratory for 14 to 21 days. The cultured chondrocytes were then injected into the area of the defect. The defect was covered with a sutured periosteal flap taken from the proximal medial tibia. Evaluation included clinical examination according to explicit criteria and arthroscopic examination with a biopsy of the transplantation site.
Patients were followed for 16 to 66 months (mean, 39). Initially, the transplants eliminated knee locking and reduced pain and swelling in all patients. After three months, arthroscopy showed that the transplants were level with the surrounding tissue and spongy when probed, with visible borders. A second arthroscopic examination showed that in many instances the transplants had the same macroscopic appearance as they had earlier but were firmer when probed and similar in appearance to the surrounding cartilage. Two years after transplantation, 14 of the 16 patients with femoral condylar transplants had good-to-excellent results. Two patients required a second operation because of severe central wear in the transplants, with locking and pain. A mean of 36 months after transplantation, the results were excellent or good in two of the seven patients with patellar transplants, fair in three, and poor in two; two patients required a second operation because of severe chondromalacia. Biopsies showed that 11 of the 15 femoral transplants and 1 of the 7 patellar transplants had the appearance of hyaline cartilage.
Cultured autologous chondrocytes can be used to repair deep cartilage defects in the femorotibial articular surface of the knee joint.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro-or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.
    Stem cell International 01/2015; · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Patellofemoral instability is common and affects a predominantly young age group. Chondral injury occurs in up to 95%, and includes osteochondral fractures and loose bodies acutely and secondary degenerative changes in recurrent cases. Biomechanical abnormalities, such as trochlear dysplasia, patella alta, and increased tibial tuberosity-trochlear groove distance, predispose to both recurrent dislocations and patellofemoral arthrosis. Design: In this article, we review the mechanisms of chondral injury in patellofemoral instability, diagnostic modalities, the distribution of lesions seen in acute and episodic dislocation, and treatments for articular cartilage lesions of the patellofemoral joint. Results: Little specific evidence exists for cartilage treatments in patellofemoral instability. In general, the results of reparative and restorative procedures in the patellofemoral joint are inferior to those observed in other compartments of the knee. Conclusion: Given the increased severity of chondral lesions and progression to osteoarthritis seen with recurrent dislocations, careful consideration should be given to early stabilisation in patients with predisposing factors.
    Cartilage 06/2014; 5(3):136. DOI:10.1177/1947603514530142