Localization of the histamine H2 receptor and gene transcripts in rat stomach: back to parietal cells.

Unité de Neurobiologie et Pharmacologie (U. 109) de l'INSERM, Centre Paul Broca, Paris, France.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 03/1994; 198(3):1195-202. DOI: 10.1006/bbrc.1994.1169
Source: PubMed

ABSTRACT In contrast with many physiological studies suggesting that histamine H2 receptors are present on acid-secreting parietal cells of the gastric epithelium, it was recently shown that immune cells in the lamina propria are the only cells expressing H2-receptor mRNAs (Mezey and Palkovits, Science, 1992, 258, 1662-1665). We have reinvestigated the cellular localization of H2 receptors in the rat stomach by visualizing both the H2 receptor mRNA and the H2-receptor protein itself. In situ hybridization histochemistry performed with an antisense riboprobe for the rat H2 receptor, and autoradiographic distribution of 125I-aminopotentidine binding sites, a highly selective H2-receptor ligand, did not show any labeling of the lamina propria. Signals were clearly and solely detected in the gastric epithelium, the strongest being observed in the upper part of the glands where the H2 receptor gene transcripts were only detected within parietal cells. In situ hybridization performed with an antisense riboprobe for L-histidine decarboxylase mRNA confirmed the basal localization of the histamine-synthetizing cells in the rat gastric gland, at some distance from parietal histamine-sensitive cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The guinea pig is the prototypic animal species for the histamine H2 receptor. Using a strategy based upon nucleotide sequence homology and starting from the sequence of the rat histamine H2 receptor (Ruat et al., Biochem. Biophys. Res. Commun. 1991, 179: 1470-78), we have cloned an intronless highly homologous DNA very likely encoding the guinea pig H2 receptor. The encoded 359 amino acid protein displays 83 to 86% identity with the rat-, human- or dog-H2 receptors. Northern blot analysis identified a single transcript of 4.6 kb in peripheral tissues and brain areas in which the presence of the H2 receptor had been revealed previously by either photoaffinity labeling or binding studies. In brain, the distribution of transcripts, established by either Northern blots or in situ hybridization studies, was consistent with the localization of the H2-receptor. In addition, using Southern analysis of a chromosome mapping panel constructed from human x hamster hybridomas, we assigned the H2 receptor gene to human chromosome 5.
    Biochemical and Biophysical Research Communications 07/1995; 211(2):570-7. DOI:10.1006/bbrc.1995.1851 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The histamine H3 receptor has been shown to inhibit pentagastrin-induced gastric acid secretion in dogs. Since pentagastrin releases histamine in dogs, we have now assessed whether the effects of H3-receptor ligands may be indirectly mediated by changes in gastric histamine release. METHODS: Pentagastrin infusions (1 or 6 micrograms/kg/h), alone or together with the H3-receptor agonist (R) alpha-methylhistamine (1.2 mumol/kg/h) or the antagonist thioperamide (0.1 mumol/kg/h), were performed in dogs. One group (anaesthetized) was used for enzyme immunoassays of plasma histamine and, when required. (R) alpha-methylhistamine in the gastrosplenic vein, and another group (non-anaesthetized) for measurement of gastric acid secretion. RESULTS: Histamine levels were increased five- and eight-fold after 1 and 6 micrograms/kg/h pentagastrin, respectively, whereas acid output was nearly maximal at the lower dosage. (R) alpha-methylhistamine, at a plasma concentration of 0.15 microM, inhibited histamine release by 78% (P < 0.007) and 37% (not significant) and the total acid output by 44% (P < 0.05) and 19% (not significant) after infusion of 1 and 6 micrograms/kg/h pentagastrin, respectively. Thioperamide, together with pentagastrin in low dose, significantly increased histamine release by 212% (P < 0.05), whereas acid output increased by 34% (not significant). CONCLUSIONS: The histamine H3 receptor mediates a negative feedback control of pentagastrin-induced release of gastric histamine. It is tonically activated by endogenous histamine after pentagastrin in low dosage. The control of acid secretion by the H3 receptor seems to involve modulation of endogenous histamine release, possibly by means of enterochromaffin-like cells.
    Scandinavian Journal of Gastroenterology 07/1996; 31(7):631-8. DOI:10.3109/00365529609009141 · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autoradiographic studies of the distribution of the histamine H2 receptor and its messenger RNAs were performed on serial frontal and a few sagittal sections of guinea-pig brain using [(125)I]iodoaminopotentidine for radioligand binding and a 33P-labelled complementary RNA probe for in situ hybridization, respectively. Both probes were validated by assessing non-specific labelling using non-radioactive competing H2 receptor ligands and a sense probe for binding sites and gene transcripts, respectively. In some areas, e.g., cerebral cortex, hippocampal complex or cerebellum, such studies were completed by identification of neurons expressing the H2 receptor messenger RNAs on emulsion-dipped sections. Nissl-stained sections from comparable levels were used to localize brain structures. In many brain areas, the distribution of the H2 receptor and its messenger RNAs appeared to parallel that known for histaminergic axons. For instance. high levels of both H2 receptor markers were detected in striatal and limbic areas known to receive abundant histaminergic projections. In contrast, in septum, hypothalamic, pontine and several thalamic nuclei, a comparatively low density of both H2 receptor markers was detected, suggesting that histamine actions in these areas are mediated by H1 and/or H3 receptors. Generally, the distribution of H2 receptor messenger RNA correlates well with that of [(125)I]iodoaminopotentidine binding sites, although some differences were observed. In a few regions (e.g., substantia nigra, locus coeruleus) high or moderate densities of binding sites were accompanied by a much more restricted expression of H2 receptor transcripts. Conversely, the mammillary region and the pontine nucleus exhibited higher levels of hybridization than of binding sites. In hippocampus, cerebral and cerebellar cortex there was a selective localization of the H2 receptor messenger RNA in the granule cells of dentate gyrus, pyramidal cells of the Ammon's horn and cerebral cortex, and Purkinje cells of cerebellum, whereas [(125)I]iodoaminopotentidine binding sites were located in layers where the dendritic trees of these messenger RNA-expressing neurons extend. The same discrepancy between messenger RNAs and binding sites suggests that striatonigral endings are endowed with the H2 receptor. The histamine H1 and H2 receptors both appear to be present in several brain areas, in some cases in a way suggesting their potential co-expression by the same neuronal populations, e.g., in granule and pyramidal cells in the hippocampal formation. This co-expression accounts for synergic responses, e.g., on cAMP generation, previously observed upon co-stimulation of both receptor subtypes. The widespread distribution of the H2 receptor, namely in thalamic nuclei or in telencephalic areas such as most layers of the cerebral cortex, together with its excitatory role previously established in electrophysiological studies, support its alleged function in mediating the histamine-driven control of arousal mechanisms. In addition, the detection of H2 receptor expression in brainstem areas from which other monoaminergic pathways involved in the control of states of sleep and wakefulness emanate, e.g., several raphe nuclei, locus coeruleus or substantia innominata, suggests possible interrelationships between all of these systems with highly divergent projections to the thalamus and telencephalon. The present mapping of the H2 receptor and its gene transcripts should facilitate neurochemical, neurophysiological and behavioural studies aimed at clarifying the role of histaminergic systems in brain.
    Neuroscience 10/1997; 80(2):321-43. DOI:10.1016/S0306-4522(97)00010-9 · 3.33 Impact Factor