Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space

Department of Biomedical Engineering, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada.
Journal of Computer Assisted Tomography (Impact Factor: 1.6). 03/1994; 18(2):192-205. DOI: 10.1097/00004728-199403000-00005
Source: PubMed

ABSTRACT In both diagnostic and research applications, the interpretation of MR images of the human brain is facilitated when different data sets can be compared by visual inspection of equivalent anatomical planes. Quantitative analysis with predefined atlas templates often requires the initial alignment of atlas and image planes. Unfortunately, the axial planes acquired during separate scanning sessions are often different in their relative position and orientation, and these slices are not coplanar with those in the atlas. We have developed a completely automatic method to register a given volumetric data set with Talairach stereotaxic coordinate system.
The registration method is based on multi-scale, three-dimensional (3D) cross-correlation with an average (n > 300) MR brain image volume aligned with the Talariach stereotaxic space. Once the data set is re-sampled by the transformation recovered by the algorithm, atlas slices can be directly superimposed on the corresponding slices of the re-sampled volume. the use of such a standardized space also allows the direct comparison, voxel to voxel, of two or more data sets brought into stereotaxic space.
With use of a two-tailed Student t test for paired samples, there was no significant difference in the transformation parameters recovered by the automatic algorithm when compared with two manual landmark-based methods (p > 0.1 for all parameters except y-scale, where p > 0.05). Using root-mean-square difference between normalized voxel intensities as an unbiased measure of registration, we show that when estimated and averaged over 60 volumetric MR images in standard space, this measure was 30% lower for the automatic technique than the manual method, indicating better registrations. Likewise, the automatic method showed a 57% reduction in standard deviation, implying a more stable technique. The algorithm is able to recover the transformation even when data are missing from the top or bottom of the volume.
We present a fully automatic registration method to map volumetric data into stereotaxic space that yields results comparable with those of manually based techniques. The method requires no manual identification of points or contours and therefore does not suffer the drawbacks involved in user intervention such as reproducibility and interobserver variability.

  • Source
    • "Based on a data-driven whole-brain approach for meta-analysis. Studies based on selected ROIs were excluded, 7. Were reported in standard stereotaxic spaces such as Montreal Neurological Institute (MNI) [Collins et al., 1994] or Talairach and Tournoux space [Talairach and Tornoux, 1988] 8. Were driven by categorical contrasts rather than correlation analyses, and 9. Reported a t-value 3 or a Z-score 2.33 to ensure comparable specificity [Friebel et al., 2011]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous positron emission tomography (PET) studies have shown that various cortical areas are activated to process speech signal in cochlear implant (CI) users. Nonetheless, differences in task dimension among studies and low statistical power preclude from understanding sound processing mechanism in CI users. Hence, we performed activation likelihood estimation meta-analysis of PET studies in CI users and normal hearing (NH) controls to compare the two groups. Eight studies (58 CI subjects/92 peak coordinates; 45 NH subjects/40 peak coordinates) were included and analyzed, retrieving areas significantly activated by lexical and nonlexical stimuli. For lexical and nonlexical stimuli, both groups showed activations in the components of the dual-stream model such as bilateral superior temporal gyrus/sulcus, middle temporal gyrus, left posterior inferior frontal gyrus, and left insula. However, CI users displayed additional unique activation patterns by lexical and nonlexical stimuli. That is, for the lexical stimuli, significant activations were observed in areas comprising salience network (SN), also known as the intrinsic alertness network, such as the left dorsal anterior cingulate cortex (dACC), left insula, and right supplementary motor area in the CI user group. Also, for the nonlexical stimuli, CI users activated areas comprising SN such as the right insula and left dACC. Previous episodic observations on lexical stimuli processing using the dual auditory stream in CI users were reconfirmed in this study. However, this study also suggests that dual-stream auditory processing in CI users may need supports from the SN. In other words, CI users need to pay extra attention to cope with degraded auditory signal provided by the implant. Hum Brain Mapp, 2015. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 05/2015; 36(5):1982-94. DOI:10.1002/hbm.22750 · 6.92 Impact Factor
  • Source
    • "Scores are means (SD); rating scale (1 — very low, 10 — perfect). by first normalizing individual data through linear registration to the MNI template using an in-house algorithm (Collins et al., 1994 "
    [Show abstract] [Hide abstract]
    ABSTRACT: We used fMRI to investigate neural activation in reading aloud in bilinguals differing in age of acquisition. Three groups were compared: French-English bilinguals who acquired two languages from birth (simultaneous), French-English bilinguals who learned their L2 after the age of 5 years (sequential), and English-speaking monolinguals. While the bilingual groups contrasted in age of acquisition, they were matched for language proficiency, although sequential bilinguals produced speech with a less native-like accent in their L2 than in their L1. Simultaneous bilinguals activated similar brain regions to an equivalent degree when reading in their two languages. In contrast, sequential bilinguals more strongly activated areas related to speech-motor control and orthographic to phonological mapping, the left inferior frontal gyrus, left premotor cortex, and left fusiform gyrus, when reading aloud in L2 compared to L1. In addition, the activity in these regions showed a significant positive correlation with age of acquisition. The results provide evidence for the engagement of overlapping neural substrates for processing two languages when acquired in native context from birth. However, it appears that the maturation of certain brain regions for both speech production and phonological encoding are limited by a sensitive period for L2 acquisition regardless of language proficiency. Copyright © 2015 Elsevier Inc. All rights reserved.
    NeuroImage 03/2015; 112. DOI:10.1016/j.neuroimage.2015.03.016 · 6.36 Impact Factor
  • Source
    • "T1 images were registered to the ICBM 152 template with a 12-parameter linear transformation (Collins et al., 1994), RF inhomogeneity corrected (Sled and Pike, 1998), skull stripped (Smith, 2002), tissue classified (Zijdenbos et al., 2002) and tissue partial volume estimated (Tohka et al., 2004). Deformable models were used to fit the white matter surface for each hemisphere separately, followed by an expansion outward to find the gray matter/CSF intersection (MacDonald et al., 2000; Kim et al., 2005) resulting in 4 surfaces of 41,962 polygons each. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca’s area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter) ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in people who stutter.
    Frontiers in Human Neuroscience 03/2015; 9. DOI:10.3389/fnhum.2015.00089 · 2.90 Impact Factor
Show more