Immunoregulatory role of interleukin 10 in rheumatoid arthritis.

Kennedy Institute of Rheumatology, Hammersmith, London, UK.
Journal of Experimental Medicine (Impact Factor: 13.91). 06/1994; 179(5):1517-27.
Source: PubMed

ABSTRACT The presence and the role of interleukin 10 (IL-10), a potent cytokine synthesis inhibitory factor and antiinflammatory cytokine, were investigated in rheumatoid arthritis (RA). The expression of both mRNA and protein for IL-10 could be demonstrated in RA and osteoarthritis (OA) joints. Human IL-10 mRNA could be demonstrated by polymerase chain reaction amplification of cDNA made by reverse transcription of total RNA extracted directly from synovial tissue in five out of five RA and four out of five OA patients. IL-10 protein was demonstrated by specific immunoassay and immunohistology. IL-10 protein was spontaneously produced in all 11 RA and 17 OA synovial membrane cultures investigated, and this production was sustained for up to 5 d in culture in the absence of any extrinsic stimulation. IL-10 protein could also be detected by immunohistology in all five RA and four OA synovial membrane biopsies investigated, but not three normal synovial membranes. Immunohistology revealed that the IL-10 was localized to the synovial membrane lining layer and mononuclear cell aggregates. Immunofluorescence double staining revealed that the sources of IL-10 were monocytes in the lining layer, and T cells in the mononuclear cell aggregates. We found evidence that the IL-10 expression was functionally relevant, as neutralization of endogenously produced IL-10 in the RA synovial membrane cultures resulted in a two- to threefold increase in the protein levels of proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and IL-1 beta, although IL-6 and IL-8 levels were not affected. The addition of exogenous recombinant IL-10 to the RA synovial membrane cultures resulted in a two- to threefold decrease in the levels of TNF-alpha and IL-1 beta. IL-8 levels were reduced by day 5; however, IL-6 levels were not affected by exogenous IL-10. Neutralization of the endogenous IL-10 in two out of seven RA synovial membrane cultures resulted in the expression of detectable levels of interferon gamma (561-1,050 pg/ml). Taken together, the above findings suggest that IL-10 is spontaneously produced in RA and OA and is an important immunoregulatory component in the cytokine network of RA, regulating monocyte and in some cases T cell cytokine production.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroimmune diseases have diverse symptoms and etiologies but all involve pathological inflammation that affects normal central nervous system signaling. Critically, many neuroimmune diseases also involve insufficient signaling/bioavailability of interleukin-10 (IL-10). IL-10 is a potent anti-inflammatory cytokine released by immune cells and glia, which drives the regulation of a variety of anti-inflammatory processes. This review will focus on the signaling pathways and function of IL-10, the current evidence for insufficiencies in IL-10 signaling/bioavailability in neuroimmune diseases, as well as the implications for IL-10-based therapies to treating such problems. We will review in detail four pathologies as examples of the common etiologies of such disease states, namely neuropathic pain (nerve trauma), osteoarthritis (peripheral inflammation), Parkinson's disease (neurodegeneration), and multiple sclerosis (autoimmune). A number of methods to increase IL-10 have been developed (e.g. protein administration, viral vectors, naked plasmid DNA, plasmid DNA packaged in polymers to enhance their uptake into target cells, and adenosine 2A agonists), which will also be discussed. In general, IL-10-based therapies have been effective at treating both the symptoms and pathology associated with various neuroimmune diseases, with more sophisticated gene therapy-based methods producing sustained therapeutic effects lasting for several months following a single injection. These exciting results have resulted in IL-10-targeted therapeutics being positioned for upcoming clinical trials for treating neuroimmune diseases, including neuropathic pain. Although further research is necessary to determine the full range of effects associated with IL-10-based therapy, evidence suggests IL-10 may be an invaluable target for the treatment of neuroimmune disease. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Neuropharmacology 11/2014; DOI:10.1016/j.neuropharm.2014.10.020 · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-10 (IL-10) is arguably the most potent anti-inflammatory cytokine. It is produced by almost all the innate and adaptive immune cells. These cells also serve as its targets, indicating that IL-10 secretion and action is highly regulated and perhaps compartmentalized. Consistent with this notion, various efforts directed at systemic administration of IL-10 to modulate autoimmune diseases (type 1 diabetes, multiple sclerosis, rheumatoid arthritis, psoriasis) have produced conflicting and largely inconsequential effects. On the other hand, IL-10 can promote humoral immune responses, enhancing class II expression on B cells and inducing immunoglobulin (Ig) production. Consequently, the high IL-10 level in systemic lupus erythematosus (SLE) patients is considered pathogenic and its blockade ameliorates the disease. In this perspective, we review preclinical findings and results of recent clinical studies using exogenous IL-10 to treat the aforementioned autoimmune diseases. In addition, given the limited success of IL-10 supplementation, we suggest that future studies should be expanded beyond modulating the delivery modes to include developing new strategies to protect and replenish the endogenous sources of IL-10. As an example, we provide evidence that aberrant Fas-mediated deletion of IL-10-producing B cells subverts the immunoregulatory role of IL-10 in autoimmune diabetes and that modulation of the Fas pathway preserves the IL-10-producing B cells and completely protects NOD mice from developing the disease. Copyright © 2014. Published by Elsevier Ltd.
    Cytokine 12/2014; DOI:10.1016/j.cyto.2014.10.031 · 2.87 Impact Factor

Full-text (3 Sources)

Available from
May 21, 2014