Article

Distribution of rubrospinal synaptic input to cat triceps surae motoneurons.

Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195.
Journal of Neurophysiology (Impact Factor: 3.04). 11/1993; 70(4):1460-8.
Source: PubMed

ABSTRACT 1. We evoked steady-state synaptic potentials in triceps surae motoneurons of the cat by stimulating the hindlimb projection area of the contralateral magnocellular red nucleus at 200 Hz. We measured the effective synaptic currents (IN) underlying the synaptic potentials using a modified voltage-clamp technique. We also determined the effect of the rubrospinal input on the discharge rate of some of the motoneurons by inducing repetitive discharge with long injected current pulses during which the red nucleus stimulation was repeated. 2. At motoneuron resting potential, the distribution of IN from the red nucleus within the triceps surae pools was qualitatively similar to the distribution of synaptic potentials: 86% of the putative type F motoneurons received a net depolarizing IN from the red nucleus stimulation, whereas only 38% of the putative type S units did so. The mean values of IN were significantly different in the two groups [+4.1 +/- 5.0 nA (SD) for putative type F and -1.6 +/- 3.1 nA for putative type S]. 3. However, when the values of IN at threshold for repetitive firing were estimated, the distribution of IN from the red nucleus was quite different. At threshold, all of the putative type S units received hyperpolarizing IN but so did nearly half of the putative type F units. 4. As would be expected from the wide range of IN at threshold (-20 to +12 nA), the red nucleus input produced dramatically different effects on the discharge of different motoneurons.(ABSTRACT TRUNCATED AT 250 WORDS)

0 Followers
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: During voluntary contraction, firing rates of individual motor units (MUs) increase modestly over a narrow force range beyond which little additional increase in firing rate is seen. Such saturation of MU discharge may be a consequence of extrinsic factors that limit net synaptic excitation acting upon motor neurons (MNs) or may be due to intrinsic properties of the MNs. Two sets of experiments involving recording of human biceps brachii MUs were carried out to evaluate saturation. In one, the extent of saturation was quantified for 136 low threshold MUs during isometric ramp contractions. Firing rate - force data were best fit by a saturating function for 90% of MUs recorded with a maximum rate of 14.8 ± 2.0 impulses/s. In the second set of experiments, to distinguish extrinsic from intrinsic factors underlying saturation, we artificially augmented descending excitatory drive to biceps MNs by activation of muscle spindle afferents through tendon vibration. We examined the change in firing rate caused by tendon vibration in 96 MUs that were voluntarily activated at rates below and at saturation. Vibration had little effect on the discharge of MUs that were firing at saturation frequencies but strongly increased firing rates of the same units when active at lower frequencies. These results indicate that saturation is likely caused by intrinsic mechanisms that prevent further increases in firing rate in the presence of increasing synaptic excitation. Possible intrinsic cellular mechanisms that limit firing rates of motor units during voluntary effort are discussed. Copyright © 2014, Journal of Neurophysiology.
    Journal of Neurophysiology 12/2014; 113(5):jn.00777.2014. DOI:10.1152/jn.00777.2014 · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Motor responses of varying intensities rely on descending commands to heterogeneous pools of motoneurons. In vertebrates, numerous sources of descending excitatory input provide systematically more drive to progressively less excitable spinal motoneurons. While this presumably facilitates simultaneous activation of motor pools, it is unclear how selective patterns of recruitment could emerge from inputs weighted this way. Here, using in vivo electrophysiological and imaging approaches in larval zebrafish, we find that, despite weighted excitation, more excitable motoneurons are preferentially activated by a midbrain reticulospinal nucleus by virtue of longer membrane time constants that facilitate temporal summation of tonic drive. We confirm the utility of this phenomenon by assessing the activity of the midbrain and motoneuron populations during a light-driven behavior. Our findings demonstrate that weighted descending commands can generate selective motor responses by exploiting systematic differences in the biophysical properties of target motoneurons and their relative sensitivity to tonic input.
    Neuron 07/2014; 83(3):708-721. DOI:10.1016/j.neuron.2014.06.021 · 15.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neuronal input-output function depends on recruitment threshold and gain of the firing frequency-current (f–I) relationship. These two parameters are positively correlated in ocular motoneurons (MNs) recorded in alert preparation and inhibitory inputs could contribute to this correlation. Phasic inhibition mediated by γ-amino butyric acid (GABA) occurs when a high concentration of GABA at the synaptic cleft activates postsynaptic GABAA receptors, allowing neuronal information transfer. In some neuronal populations, low concentrations of GABA activate non-synaptic GABAA receptors and generate a tonic inhibition, which modulates cell excitability. This study determined how ambient GABA concentrations modulate the input-output relationship of rat oculomotor nucleus MNs. Superfusion of brain slices with GABA (100 μM) produced a GABAA receptor-mediated current that reduced the input resistance, increased the recruitment threshold and shifted the f–I relationship rightward without any change in gain. These modifications did not depend on MN size. In absence of exogenous GABA, gabazine (20 μM; antagonist of GABAA receptors) abolished spontaneous inhibitory postsynaptic currents and revealed a tonic current in MNs. Gabazine increased input resistance and decreased recruitment threshold mainly in larger MNs. The f–I relationship shifted to the left, without any change in gain. Gabazine effects were chiefly due to MN tonic inhibition because tonic current amplitude was five-fold greater than phasic. This study demonstrates a tonic inhibition in ocular MNs that modulates cell excitability depending on cell size. We suggest that GABAA tonic inhibition acting concurrently with glutamate receptors could reproduce the positive covariation between threshold and gain reported in alert preparation.This article is protected by copyright. All rights reserved
    The Journal of Physiology 09/2014; 592(22). DOI:10.1113/jphysiol.2014.276576 · 4.54 Impact Factor