Crowe, JE Jr, Collins, PL, London, WT, Chanock, RM and Murphy, BR. A comparison in chimpanzees of the immunogenicity and efficacy of live attenuated respiratory syncytial virus (RSV) temperature-sensitive mutant vaccines and vaccinia virus recombinants that express the surface glycoproteins of RSV. Vaccine 11: 1395-1404

Respiratory Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.
Vaccine (Impact Factor: 3.62). 12/1993; 11(14):1395-404. DOI: 10.1016/0264-410X(93)90168-W
Source: PubMed

ABSTRACT Respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis and pneumonia in children. The present study compares the level of attenuation, genetic stability and efficacy of three conditional-lethal temperature-sensitive (ts) mutants of the RSV A2 wild-type virus, designated ts-1, ts-1-NG1, and ts-4, in seronegative chimpanzees and also compares their efficacy with that of vaccinia virus recombinants that express the surface glycoproteins of RSV. Each of the ts mutants was highly attenuated in the lower respiratory tract, but still retained the capacity to induce significant rhinorrhoea. Each of the three ts mutants underwent partial reversion to a non-ts (ts+) phenotype during replication in a minority of the chimpanzees. The ts+ virus present in the upper respiratory tract of the chimpanzees did not spread to the lower respiratory tract and represented only a minority fraction of the virus present in the nasopharyngeal swab specimens. The ts mutants were highly immunogenic and provided resistance that effectively restricted RSV replication following virus challenge. In contrast, the vaccinia-RSV recombinants were less immunogenic. They protected the lungs of two of four chimpanzees challenged with RSV, but failed to protect the upper respiratory tract. The chimpanzee can serve as a model for the rapid evaluation of further attenuated live RSV vaccines.

Download full-text


Available from: James E Crowe, Sep 29, 2015
10 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: RSV and PIV3 are responsible for about 30% of severe viral respiratory tract disease leading to hospitalization of infants and children. For this reason, there is a need to develop vaccines effective against these viruses. Since these viruses cause severe disease in early infancy, vaccines must be effective in the presence of maternal antibody. Currently, several strategies for immunization against these viruses are being explored including peptide vaccines, subunit vaccines, vectored vaccines (e.g., vaccinia-RSV or adenovirus-RSV recombinants), and live attenuated virus vaccines. The current status of these approaches is reviewed. In addition, the immunologic basis for the disease potentiation seen in vaccinees immunized with formalin-inactivated RSV during subsequent RSV infection is reviewed. The efficacy of immunization in the presence of maternal antibody is discussed. Much progress for a RSV and PIV3 vaccine has been made and successful immunization against each of these pathogens should be achieved within this decade.
    Virus Research 05/1994; 32(1):13-36. DOI:10.1016/0168-1702(94)90059-0 · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A cold-passaged RSV mutant, designated cp-RSV, which acquired host range mutations during 52 passages at low temperature in bovine tissue culture, was completely attenuated for seropositive adults and children but retained the capacity to cause upper respiratory disease in seronegative infants. We sought to introduce additional attenuating mutations, such as temperature-sensitive (ts) and small-plaque (sp) mutations, into the cp-RSV mutant, which is a ts + virus, in order to generate a mutant which would be satisfactorily attenuated in seronegative infants and young children. Nine mutants of cp-RSV, which had acquired either the ts or small-plaque sp phenotype, were generated by chemical mutagenesis with 5-fluorouracil. The two ts mutants with the lowest in vitro shut-off temperature, namely the cpts-248 (38°C) and cpts-530 (39°C) mutants, were the most restricted of the nine cp-RSV mutant progeny tested for efficiency of replication in Balb/c mice. In seronegative chimpanzees, the cpts-248 mutant replicated fourfold less efficiently in the nasopharynx and caused significantly less rhinorrhoea than its cp-RSV parent. The cpts-248 mutant virus, like its cp-RSV parent, was 1000-fold restricted in replication in the trachea compared with wild-type RSV. Previously, another candidate RSV live attenuated vaccine strain, a mutant designated ts-1, exhibited some instability of its ts phenotype following replication in susceptible humans or chimpanzees. Hence, we sought cp-RSV ts progeny that exhibited a greater degree of stability of the ts phenotype than the prototype ts-1 mutant. The cpts-248 and cpts-530 progeny viruses exhibited a greater degree of stability of the ts phenotype in nude mice than the ts-1 virus, and in chimpanzees, the former mutant also exhibited a greater stability of its ts phenotype than ts-1. The cpts-248 mutant was immunogenic and induced a high level of resistance in chimpanzees to subsequent challenge with wild-type RSV. The cpts-248 mutant therefore exhibits a set of properties that make it a promising vaccine candidate. These desirable properties of cpts-248 suggest that the mutant should be tested in humans for its suitability in immunoprophylaxis.
    Vaccine 07/1994; 12(8-12):691-699. DOI:10.1016/0264-410X(94)90218-6 · 3.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A cold-passaged (cp), temperature-sensitive (ts) RSV mutant designated RSV cpts-248 (shut-off temperature 38°C), which possesses host-range mutations acquired during 52 passages at low temperature in bovine tissue culture and a ts phenotype introduced by subsequent chemical mutagenesis, was found previously to be attenuated, immunogenic, and protective against wild-type challenge in seronegative chimpanzees. We sought to introduce additional attenuating mutations such as small-plaque (sp) and ts mutations into RSV cpts-248 by chemical mutagenesis with 5-fluorouracil with the intent of obtaining cpts-248 derivatives that are more attenuated in mice or chimpanzees and that are more genetically stable following replication in vivo. Ten mutants of RSV cpts-248 which had acquired a sp phenotype or a second ts mutation were generated by chemical mutagenesis. Five cpts-248 derivatives which had acquired mutations that specified a 36°C shut-off temperature for plaque formation and one which had acquired only a sp phenotype were more restricted in replication in Balb/c mice than the cpts-248 parental strain. One mutant, designated RSV cpts-248/404 (shut-off temperature 36°C), was 100 times more restricted in replication in the nasal turbinates of mice and 1000 times more restricted in the nasopharynx of seronegative chimpanzees than its cpts-248 parent. The cpts-248/404 mutant was completely restricted in replication in the lower respiratory tract of chimpanzees even following direct intratracheal administration. The ts phenotype of the cpts-248/404 mutant was stable during replication in vivo in mice and chimpanzees. Chimpanzees immunized with cpts-248/404 were fully protected against upper respiratory tract disease and lower respiratory tract virus replication upon subsequent challenge with wild-type virus. The cpts-248/404 virus and related mutants exhibit many desirable characteristics which make them promising vaccine candidates.
    Vaccine 08/1994; 12(9-12):783-790. DOI:10.1016/0264-410X(94)90286-0 · 3.62 Impact Factor
Show more