Killing by cytotoxic T cells and natural killer cells: Multiple granule serine proteases as initiators of DNA fragmentation

Cellular Cytotoxicity Laboratory, Austin Hospital, Heidelberg, Victoria, Australia.
Immunology and Cell Biology (Impact Factor: 4.15). 07/1993; 71 ( Pt 3)(3):201-8. DOI: 10.1038/icb.1993.22
Source: PubMed


The vectorial secretion of the contents of highly specialized cytoplasmic granules is of pivotal importance to the killing by cytotoxic T cells and natural killer cells. The purification and biochemical characterization of some of the granule constituents, in particular the pore-forming protein perforin, had engendered the notion that the killing of cellular targets was largely an osmotic phenomenon analogous to the insult delivered by complement attack. However, the apparent absence of membrane perforation in various examples of lymphocyte-mediated killing, and the observation that perforin alone could not account for apoptosis associated with programmed cell death, suggested that perforin activity represented, at best, only a part of the whole mechanism. More recently, the characterization of a large family of granule serine proteases (granzymes) has provided evidence that these molecules may collaborate in the killing process by inducing a 'suicide' pathway in target cells, resulting in DNA fragmentation. However, the serine proteases are inactive alone, their natural substrates have not been defined and they require access into the target cell cytoplasm via perforin-induced pores to exert their deleterious effects. Thus, we propose that the cytotoxic granule-mediated mechanism comprises at least two interdependent arms, perforin and serine proteases, that together are capable of inflicting cell death by osmotic shock and/or nuclear collapse.

2 Reads
  • Source
    • "When the MHC-I expression is down-regulated on target cells, the NK cells may activate and destroy them (reviewed in [32]). The process is mediated by secretion of cytotoxic proteases, such as granzymes, which activate the caspase cascade in the target cells, eventually leading to apoptosis [33]. We observed a down-regulation of genes coding for granzymes B, H, and M (GZMB, GZMH, GZMM) after SR, which may indicate decreased NK cell function. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases.
    PLoS ONE 10/2013; 8(10):e77184. DOI:10.1371/journal.pone.0077184 · 3.23 Impact Factor
  • Source
    • "A crucial role in destroying tumor cells, virus infected cells and intracellular pathogens is played by natural killer cells (NK) cells and cytotoxic T lymphocytes (CTL) [1-3]. They are armed with cytotoxic granules containing various effector molecules such as granulysin, perforin, and several granzymes [4,5]. Granulysin, an antimicrobial protein, was first identified by a subtractive hybridization procedure in functional T cell lines and alloantigen and mitogen stimulated PBL and was initially referred to as 519 [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522) were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. In this study we investigated generation of granulysin in lymphokine activated killer (LAK) cells and antigen (Listeria) specific T-cells. Semiquantitative RT-PCR revealed NKG5 to be the most prominent transcript. It was found to be up-regulated in a time-dependent manner in LAK cells and antigen specific T-cells and their subsets. Two isoforms of 519 mRNA were up-regulated under IL-2 and antigen stimulation. Moreover, two novel transcripts, without any known function, comprising solely parts of the 5 prime region of the primary transcript, were detected. A significant increase of granulysin expressing LAK cells as well as antigen specific T-cells was shown by fluorescence microscopy. On the subset level, increase in CD4+ granulysin expressing cells was found only under antigen stimulation. Immunoblotting showed the 15 kDa form of granulysin to be present in the first week of stimulation either with IL-2 or with bacterial antigen. Substantial processing to the 9 kDa form was detected during the first week in LAK cells and in the second week in antigen specific T-cells. This first comprehensive study of granulysin gene regulation in primary cultured human lymphocytes shows that the regulation of granulysin synthesis in response to IL-2 or bacterial antigen stimulation occurs at several levels: RNA expression, extensive alternative splicing and posttranslational processing.
    BMC Immunology 02/2007; 8(1):9. DOI:10.1186/1471-2172-8-9 · 2.48 Impact Factor
  • Source
    • "Perforin shares homology with the terminal complement components and can thus multimerize in eukaryotic membranes to form pores of a diameter of 50 nm or less. These perforin pores were initially thought to allow passage of lytic granule components, especially granzymes, to the target cell cytosol [10-13]. The discovery of granzyme B to be endocytosed independently of perforin as well as the induction of target cell apoptosis by granzyme B and perforin without detectable leakage of the plasma membrane questioned the pore formation model [14,15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells play an essential role in the host defence against intracellular pathogens such as Listeria, and Mycobacteria. The key mediator of bacteria-directed cytotoxicity is granulysin, a 9 kDa protein stored in cytolytic granules together with perforin and granzymes. Granulysin binds to cell membranes and is subsequently taken up via a lipid raft-associated mechanism. In dendritic cells (DC) granulysin is further transferred via early endosomes to L. innocua-containing phagosomes were bacteriolysis is induced. In the present study we analysed the role of perforin in granulysin-induced intracellular bacteriolysis in DC. We found granulysin-induced lysis of intracellular Listeria significantly increased when perforin was simultaneously present. In pulse-chase experiments enhanced bacteriolysis was observed when perforin was added up to 25 minutes after loading the cells with granulysin demonstrating no ultimate need for simultaneous uptake of granulysin and perforin. The perforin concentration sufficient to enhance granulysin-induced intracellular bacteriolysis did not cause permanent membrane pores in Listeria-challenged DC as shown by dye exclusion test and LDH release. This was in contrast to non challenged DC that were more susceptible to perforin lysis. For Listeria-challenged DC, there was clear evidence for an Ca2+ influx in response to sublytic perforin demonstrating a short-lived change in the plasma membrane permeability. Perforin treatment did not affect granulysin binding, initial uptake or intracellular trafficking to early endosomes. However, enhanced colocalization of granulysin with listerial DNA in presence of perforin was found by confocal laser scanning microscopy. The results provide evidence that perforin increases granulysin-mediated killing of intracellular Listeria by enhanced phagosome-endosome fusion triggered by a transient Ca2+ flux.
    BMC Immunology 02/2007; 8(1):14. DOI:10.1186/1471-2172-8-14 · 2.48 Impact Factor
Show more