Article

Major histocompatibility complex class I deficiency prolongs islet allograft survival.

Department of Surgery, University of California, San Francisco 94143.
Diabetes (Impact Factor: 7.9). 11/1993; 42(10):1520-7. DOI: 10.2337/diabetes.42.10.1520
Source: PubMed

ABSTRACT Because of islet allograft rejection, nonimmunosuppressed pancreatic islet allotransplantation has been unsuccessful for the treatment of type I diabetes. The role of major histocompatibility complex class I antigen expression on islet allograft survival was evaluated with the use of mice homozygous for a beta 2-microglobulin gene disruption. These mice express little if any functional major histocompatibility complex class I antigen. When these major histocompatibility complex class I-deficient islets were used as donors in an allogenic murine transplantation model, islet allograft survival was markedly prolonged. These results demonstrate a major importance for the alloresponse directed against major histocompatibility complex class I antigen.

0 Bookmarks
 · 
44 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of allorecognition in initiating lung graft rejection is not clearly defined. Using the heterotopic tracheal transplantation model, we examined the contributions of the indirect and direct allorecognition pathways in chronic airway rejection. Fully mismatched, wild-type grafts were transplanted into major histocompatibility complex (MHC) II-/-, class II-like accessory molecule (H2-DMalpha)-/- using MHC I-/- and wild-type allorecipients as control subjects. Similarly, MHC I-/-, MHC II-/-, or MHC I/II-/- allografts were transplanted into wild-type mice with appropriate control subjects. Grafts from nonimmunosuppressed recipients were evaluated at Weeks 2, 4, and 6. Grafts transplanted into MHC II-/- and H2-DMalpha-/- allorecipients showed a more intact epithelium and reduced lumen obliteration compared with grafts transplanted into wild-type or MHC I-/- allorecipients (p < 0.05 for each). These grafts exhibited abundant CD4+ and CD8+ cell infiltrates similar to control allografts. MHC I-/- and MHC I/II-/- but not MHC II-/- allografts placed in wild-type animals demonstrated less severe rejection compared with allograft control subjects (p < 0.05 for each). Although the indirect allorecognition pathway has the strongest influence on rejection, the direct pathway is sufficient to ultimately cause chronic airway rejection. In addition, these results suggest that MHC class I molecules are the principal alloantigens in the mouse heterotopic tracheal model of obliterative bronchiolitis.
    American Journal of Respiratory and Critical Care Medicine 04/2003; 167(7):999-1007. · 11.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Though CD8(+) T lymphocytes are important cellular mediators of islet allograft rejection, their molecular mechanism of rejection remains unidentified. Surprisingly, while it is generally assumed that CD8(+) T cells require classic cytotoxic mechanisms to kill grafts in vivo, neither perforin nor FasL (CD95L) are required for acute islet allograft rejection. Thus, it is unclear whether such contact-dependent cytotoxic pathways play an essential role in islet rejection. Moreover, both perforin and CD95L have been implicated in playing roles in peripheral tolerance, further obscuring the role of these effector pathways in rejection. Therefore, we determined whether perforin and/or FasL (CD95L) were required by donor MHC-restricted ('direct') CD8(+) T cells to reject islet allografts in vivo. Islet allograft rejection by primed, alloreactive CD8(+) T cells was examined independently of other lymphocyte subpopulations via adoptive transfer studies. Individual disruption of T-cell-derived perforin or allograft Fas expression had limited impact on graft rejection. However, simultaneous disruption of both pathways prevented allograft rejection in most recipients despite the chronic persistence of transferred T cells at the graft site. Thus, while there are clearly multiple cellular pathways of allograft rejection, perforin and FasL comprise alternate and necessary routes of acute CD8(+) T-cell-mediated islet allograft rejection.
    American Journal of Transplantation 09/2007; 7(8):1927-33. · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies using knockout mice document a key role for the integrin CD103 in promoting organ allograft rejection and graft-versus-host disease. However, a determination of whether blockade of the CD103 pathway represents a viable therapeutic strategy for intervention in these processes has proven problematic due to the lack of reagents that efficiently deplete CD103+ cells from wild type hosts. To circumvent this problem, we conjugated the nondepleting anti-CD103 monoclonal antibody, M290, to the toxin, saporin, to produce an immunotoxin (M290-SAP) that efficiently depletes CD103+ cells in vivo. Herein, we show that M290-SAP dramatically reduces the frequency and absolute numbers of CD103-expressing leukocytes in the blood, spleen, mesenteric lymph nodes and intestinal epithelium of treated mice. We further demonstrate that M290-SAP promotes indefinite islet allograft survival in a fully MHC mismatched mouse model. The prolonged islet allograft survival resulting from M290-SAP treatment was associated with multiple effects in the host immune system including not only depletion of CD103-expressing leukocytes, but also an increase in CD4+CD25+FoxP3+ T regulatory cells and a predominance of effector-memory CD8 T cells. Regardless of the underlying mechanisms, these data document that depletion of CD103-expressing cells represents a viable strategy for therapeutic intervention in allograft rejection.
    American Journal of Transplantation 08/2009; 9(9):2012-23. · 6.19 Impact Factor