Article

TPA-induced differentiation of human rhabdomyosarcoma cells: expression of the myogenic regulatory factors.

Istituto di Istologia ed Embriologia Generale, Fac. di Medicina, Università di Roma La Sapienza, Italy.
Experimental Cell Research (Impact Factor: 3.56). 10/1993; 208(1):209-17. DOI: 10.1006/excr.1993.1239
Source: PubMed

ABSTRACT RD cells (a cell line derived from a human rhabdomyosarcoma) undergo a very limited myogenic differentiation despite the fact that they express several myogenic determination genes. Since we have previously shown (Aguanno et al., Cancer Res. 50, 3377, 1990) that the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induces myogenic differentiation in these cells, in this paper we investigate the mechanism by which TPA interferes with the expression and/or function of the myogenic determination genes. Northern blot analysis revealed that RD cells express the myf3 (the human analog of MyoD) and myf4 (the human analog of myogenin) transcripts, but not myf5 or myf6 transcripts. The myf3 and the myf4 gene products are correctly translated and accumulated in the nuclei as shown by immunofluorescence analysis. The tumor promoter (TPA) does not modify the pattern of expression of the myf factors while it induces the accumulation of muscle-specific transcripts, such as alpha-actin and fast myosin light chain 1, and their corresponding proteins. On the other hand, within 1 day of treatment, TPA inhibits the expression of the Id gene, which is a negative regulator of MyoD activity. However, while the TPA-induced inhibition of Id message accumulation correlates with differentiation, cell confluence also causes a reduction in Id message accumulation, without inducing differentiation. Under our experimental conditions, overexpression of any of the myf cDNAs in RD cells does induce spontaneous differentiation but enhances the effect of TPA treatment independently from the level of the expressed message. These data suggest that differentiation of RD cells is likely to depend upon the activity of complexes containing the various members of the MyoD family, which can be regulated by proteins affecting MyoD dimerization such as Id, but also by other mechanisms induced by TPA, such as phosphorylation.

0 Bookmarks
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhabdomyosarcoma (RMS) is a morphologically and clinically heterogeneous group of malignant tumors that resemble developing skeletal muscle and is the most common soft-tissue sarcoma in children and adolescents. The most prominent sites involve head and neck structures (~40%), genito-urinary track (~25%), and extremities (~20%). Embryonal (ERMS) and alveolar (ARMS) are the two major RMS subtypes that are distinct in their morphology and genetic make-up. The prognosis for this cancer depends strongly on tumor size, location, staging, and child's age. In general, ERMS has a more favorable outcome, whereas the mortality rate remains high in patients with ARMS, because of its aggressive and metastatic nature. Over the past two decades, researchers have made concerted efforts to delineate genetic and epigenetic changes associated with RMS pathogenesis. These molecular signatures have presented golden opportunities to design targeted therapies for treating this aggressive cancer. This article highlights recent advances in understanding the molecular pathogenesis of RMS, and addresses promising research areas for further exploration.
    Journal of dental research 09/2011; 91(4):341-50. · 3.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rhabdomyosarcoma (RMS) includes heterogeneous tumours of mesenchymal derivation which are genetically committed to the myogenic lineage, but fail to complete terminal differentiation. Previous works have reported on deregulated myostatin, p38 and extracellular regulated kinase (ERK) signalling in RMS cell lines; however, the functional link between these pathways and their relative contribution to RMS pathogenesis and/or maintenance of the transformed phenotype in vitro are unclear. Herein we show that the constitutive expression of a dominant-negative form of activin receptor type IIb (dnACTRIIb), which inhibits myostatin signalling, decreased proliferation and promoted differentiation of the human RMS RD cell line. DnACTRIIb-dependent differentiation of RD cells correlated with a reduced SMAD2/3 (small mother against decapentaplegic) and ERK signalling and the activation of p38 pathway. Conversely, the expression of a constitutively activated ALK5 (activin receptor-like kinase) (caALK5) form, activating SMAD3 and ERK pathways, led to further impairment of RD differentiation. Pharmacological blockade of ERK pathway in RD cells was sufficient to replicate the biological phenotype observed in dnACTRIIb-expressing RD cells, and also recovered the differentiation of caALK5-expressing RD cells. Conversely, deliberate activation of p38 signalling mimics the effect of dnActRIIb and overcame the differentiation block in RD cells. These data indicate the existence of a network formed by myostatin/SMAD2/3, ERK and p38 pathways that, when deregulated, might contribute to the pathogenesis of RMS. The components of this network might, therefore, be a valuable target for interventions towards correcting the malignant phenotype of RMS.
    European journal of cancer (Oxford, England: 1990) 01/2011; 47(7):1095-105. · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children and young adults, is characterized by a partially differentiated myogenic phenotype. We have previously shown that the blocking of tumor growth and resumption of differentiation can be achieved by re-expression of miR-206, a muscle-enriched microRNA missing in RMS. In this work, we focused on BAF53a, one of the genes downregulated in miR-206-expressing RMS cells, which codes for a subunit of the SWI/SNF chromatin remodeling complex. Here we show that the BAF53a transcript is significantly higher in primary RMS tumors than in normal muscle, and is a direct target of miR-206. Sustained expression of BAF53a interferes with differentiation in myogenic cells, whereas its silencing in RMS cells increases expression of myogenic markers and inhibits proliferation and anchorage-independent growth. Accordingly, BAF53a silencing also impairs embryonal RMS and alveolar RMS tumor growth, inducing their morphological and biochemical differentiation. These results indicate that failure to downregulate the BAF53a subunit may contribute to the pathogenesis of RMS, and suggest that BAF53a may represent a novel therapeutic target for this tumor.Oncogene advance online publication, 3 June 2013; doi:10.1038/onc.2013.188.
    Oncogene 06/2013; · 8.56 Impact Factor