Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae.

Department of Biology, Faculty of Science, Osaka University, Japan.
Genetics (Impact Factor: 4.87). 02/1993; 133(1):51-66.
Source: PubMed

ABSTRACT Mutants defective in meiotic recombination were isolated from a disomic haploid strain of Saccharomyces cerevisiae by examining recombination within the leu2 and his4 heteroalleles located on chromosome III. The mutants were classified into two new complementation groups (MRE2 and MRE11) and eight previously identified groups, which include SPO11, HOP1, REC114, MRE4/MEK1 and genes in the RAD52 epistasis group. All of the mutants, in which the mutations in the new complementation groups are homozygous and diploid, can undergo premeiotic DNA synthesis and produce spores. The spores are, however, not viable. The mre2 and mre11 mutants produce viable spores in a spo13 background, in which meiosis I is bypassed, suggesting that these mutants are blocked at an early step in meiotic recombination. The mre2 mutant does not exhibit any unusual phenotype during mitosis and it is, thus, considered to have a mutation in a meiosis-specific gene. By contrast, the mre11 mutant is sensitive to damage to DNA by methyl methanesulfonate and exhibits a hyperrecombination phenotype in mitosis. Among six alleles of HOP1 that were isolated, an unusual pattern of intragenic complementation was observed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolutionary conserved Mre11/Rad50/Nbs1 complex functions as one of the guardians of genome integrity in eukaryotes; it is required for the double-strand break repair, meiosis, DNA checkpoint, and telomere maintenance. To better understand the role of the MRE11 gene in Arabidopsis, we performed comparative analysis of several mre11 alleles with respect to genome stability and meiosis. The mre11-4 and mre11-2 alleles presumably produce truncated MRE11 proteins composed of the first 499 and 529 amino acids, respectively. Although the putative MRE11 truncated proteins differ only by 30 amino acids, the mutants exhibited strikingly different phenotypes in regards to growth morphology, genome stability and meiosis. While the mre11-2 mutants are fully fertile and undergo normal meiosis, the mre11-4 plants are sterile due to aberrant repair of meiotic DNA breaks. Structural homology analysis suggests that the T-DNA insertion in the mre11-4 allele probably disrupted the putative RAD50 interaction and/or homodimerization domain, which is assumed to be preserved in mre11-2 allele. Intriguingly, introgression of the atm-2 mutant plant into the mre11-2 background renders the double mutant infertile, a phenotype not observed in either parent line. This data indicate that MRE11 partially compensates for ATM deficiency in meiosis of Arabidopsis.
    PLoS ONE 10/2013; 8(10):e78760. DOI:10.1371/journal.pone.0078760 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA double-strand breaks (DSBs) are one of the most deleterious forms of DNA damage and can result in cell inviability or chromosomal aberrations. The Mre11-Rad50-Nbs1 (MRN) ATPase-nuclease complex is a central player in the cellular response to DSBs and is implicated in the sensing and nucleolytic processing of DSBs, as well as in DSB signaling by activating the cell cycle checkpoint kinase ATM. ATP binding to Rad50 switches MRN from an open state with exposed Mre11 nuclease sites to a closed state with partially buried nuclease sites. The functional meaning of this switch remained unclear. A new study shows that ATP binding to Rad50 promotes DSB recognition, tethering, and ATM activation, while ATP hydrolysis opens the nuclease active sites to promote processing of DSBs. MRN thus emerges as functional switch that may coordinate the temporal transition from signaling to processing of DSBs.
    BioEssays 12/2014; 36(12). DOI:10.1002/bies.201400102 · 4.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
    Genetics 11/2014; 198(3):795-835. DOI:10.1534/genetics.114.166140 · 4.87 Impact Factor


Available from