Article

The pineal and circadian rhythms of temperature selection and locomotion in lizards.

Dipartimento di Scienze del Comportamento Animale e dell' Uomo, Pisa, Italy.
Physiology & Behavior (Impact Factor: 3.16). 06/1993; 53(5):911-5. DOI: 10.1016/0031-9384(93)90268-K
Source: PubMed

ABSTRACT The existence of a circadian rhythm of behavioral temperature selection has been demonstrated in lizards (Podarcis sicula) held on a thermal gradient in constant darkness. This rhythm becomes temporarily abolished during 1 week following parietalectomy and 2-3 weeks following pinealectomy. Parietalectomy does not affect the locomotor rhythm, while pinealectomy invariably lengthens the freerunning period of this rhythm. These results support the contention of separate control systems for the temperature selection rhythm and the locomotor rhythm. As neither rhythm is definitively abolished by parietalectomy and pinealectomy, other pacemaking components exist elsewhere in the circadian system of Podarcis sicula which can control both rhythms.

0 Bookmarks
 · 
55 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many parameters exhibited by organisms show daily fluctuations that may persist when the organisms are held in constant environmental conditions. Rhythms that persist in constant conditions with a period close to 24 h are called circadian. Although nowadays most research in this field is focused on the molecular and genetic aspects--and therefore mostly on two animal models (Drosophila and mouse)--the study of alternative animal models still represent a useful approach to understanding how the vertebrate circadian system is organized, and how this fascinating time-keeping system has changed throughout the evolution of vertebrates. The present paper summarizes the current knowledge of the circadian organization of Reptiles. The circadian organization of reptiles is multioscillatory in nature. The retinas, the pineal, and the parietal eye (and, possibly, the suprachiasmatic nuclei of the hypothalamus, SCN) contain circadian clocks. Of particular interest is the observation that the role these structures play in the circadian organization varies considerably among species and within the same species in different seasons. Another remarkable feature of this class is the redundancy of circadian photoreceptors: retinas of the lateral eyes, pineal, parietal eye, and the brain all contain photoreceptors.
    Physiology & Behavior 04/2001; 72(4):461-71. · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lizard Iguana iguana when kept in constant ambient temperature displays endogenously generated circadian rhythms of body temperature and locomotor activity. Although surgical removal of the parietal eye has only slight effects on overt circadian rhythmicity, subsequent pinealectomy completely abolishes the rhythm of body temperature. However, the rhythm of locomotor activity is only slightly affected by parietalectomy plus pinealectomy. Our results demonstrate that the pineal complex is centrally involved in the generation and control of the circadian rhythm of body temperature but is only marginally involved in locomotor rhythmicity. Plasma melatonin levels are not significantly reduced by parietalectomy, whereas pinealectomy dramatically lowers the level and completely eliminates the circadian rhythm of melatonin in the circulation. Isolated parietal eye, pineal, and retina all synthesize melatonin with robust circadian rhythmicity when maintained for >/=4 d in culture, although in the intact animal all or almost all of the circulating melatonin comes from the pineal. The circadian system of I. iguana is composed of multiple circadian oscillators that reside in different tissues and have specific and different roles.
    Journal of Neuroscience 02/1998; 18(3):1105-14. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The conquest of land has endowed air-breathers with the capability to utilize ventilation not only to acquire oxygen but also to control blood and intracellular acid-base state. Hypercapnic acidosis (resulting from ventilatory control and/or behavioral choice), thus, has become a universal component of hypometabolic states in air-breathers, with inhibitory and/or protective roles. Here, special emphasis is placed on the understanding of alterations of acid-base state associated with changes in temperature. Hypercapnic acidosis in connection with hypometabolism has been found in a variety of air-breathing clades, from snails to mammals through lungfish, amphibians, and reptiles. The discovery of the plesiomorphic character of mammalian hibernation has made the transfer to hibernation biology of the experience gained in the application of hypercapnic acidosis (the so-called "pH-stat" procedure) relevant to acid-base control in clinical artificial hypothermia. This paves the way for mutual benefits from such reciprocal exchange of information between hibernation biology and clinical applications.
    Integrative and Comparative Biology 02/2014; · 3.02 Impact Factor