C-terminal specific protein degradation: Activity and substrate specificity of the Tsp protease

Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
Protein Science (Impact Factor: 2.86). 08/1995; 4(8):1507-15. DOI: 10.1002/pro.5560040808
Source: PubMed

ABSTRACT The activity of Tsp, a periplasmic endoprotease of Escherichia coli, has been characterized by assaying the cleavage of protein and peptide substrates, determining the cleavage sites in several substrates, and investigating the kinetics of the cleavage reaction. Tsp efficiently cleaves substrates that have apolar residues and a free alpha-carboxylate at the C-terminus. Tsp cleaves its substrates at a discrete number of sites but with rather broad primary sequence specificity. In addition to preferences for residues at the C-terminus and cleavage sites, Tsp displays a preference for substrates that are not stably folded: unstable variants of Arc repressor are better substrates than a hyperstable mutant, and a peptide with little stable structure is cleaved more efficiently than a protein substrate. These data are consistent with a model in which Tsp cleavage of a protein substrate involves binding to the C-terminal tail of the substrate, transient denaturation of the substrate, and then recognition and hydrolysis of specific peptide bonds.


Available from: Ioannis A. Papayannopoulos, Apr 08, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carboxyl-terminal protease (CtpA) plays essential functions in posttranslational protein processing in prokaryotic and eukaryotic cells. To date, only a few bacterial ctpA genes have been characterized. Here we cloned and characterized a novel CtpA. The encoding gene, ctpAp (ctpA of Paenibacillus lautus), was derived from P. lautus CHN26, a Gram-positive bacterium isolated by functional screening. Recombinant protein was obtained from protein over-expression in Escherichia coli and the biochemical properties of the enzyme were investigated. Screening of environmental sediment samples with a skim milk-containing medium led to the isolation of a P. lautus CHN26 strain that exhibited a high proteolytic activity. A gene encoding a carboxyl-terminal protease (ctpAp) was cloned from the isolate and characterized. The deduced mature protein contains 466 aa with a calculated molecular mass of 51.94 kDa, displaying 29-38% amino acid sequence identity to characterized bacterial CtpA enzymes. CtpAp contains an unusual catalytic dyad (Ser309-Lys334) and a PDZ substrate-binding motif, characteristic for carboxyl-terminal proteases. CtpAp was expressed as a recombinant protein and characterized. The purified enzyme showed an endopeptidase activity, which effectively cleaved alpha S1- and beta- casein substrates at carboxyl-terminus as well as at multiple internal sites. Furthermore, CtpAp exhibited a high activity at room temperature and strong tolerance to conventional protease inhibitors, demonstrating that CtpAp is a novel endopeptidase. Our work on CtpA represents the first investigation of a member of Family II CtpA enzymes. The gene was derived from a newly isolated P. lautus CHN26 strain exhibiting a high protease activity in the skim milk assay. We have demonstrated that CtpAp is a novel endopeptidase with distinct cleavage specificities, showing a strong potential in biotechnology and industry applications.
    BMC Biotechnology 10/2013; 13(1):89. DOI:10.1186/1472-6750-13-89 · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracytoplasmic function (ECF) sigma factors play a key role in the regulation of vital functions in the bacterial response to the environment. In Gram-negative bacteria, activity of these sigma factors is often controlled by cell-surface signaling (CSS), a regulatory system that also involves an outer membrane receptor and a transmembrane anti-sigma factor. To get more insight into the molecular mechanism behind CSS regulation, we have focused on the unique Iut system of Pseudomonas. This system contains a hybrid protein containing both a cytoplasmic ECF sigma domain and a periplasmic anti-sigma domain, apparently leading to a permanent interaction between the sigma and anti-sigma factor. We show that the Iut ECF sigma factor regulates the response to aerobactin under iron deficiency conditions and is activated by a proteolytic pathway that involves the sequential action of two proteases: Prc, which removes the periplasmic anti-sigma domain, and RseP, which subsequently removes the transmembrane domain and thereby generates the ECF active transcriptional form. We furthermore demonstrate the role of these proteases in the regulation of classical CSS systems in which the sigma and anti-sigma factors are two different proteins.
    Environmental Microbiology 12/2013; 16(8). DOI:10.1111/1462-2920.12371 · 6.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PDZ domain-containing proteases, also known as HtrA-family proteases, play important roles in bacterial cells by modulating disease pathogenesis and cell envelope stress responses. These proteases have diverse functions through proteolysis- and non-proteolysis-dependent modes. Here, we report that the genome of the causative agent of rice bacterial blight, Xanthomonas oryzae pv. oryzae, encodes seven PDZ domain-containing proteins. Systematic inactivation of their encoding genes identified that PXO_01122 and PXO_04290 (prc) are involved in virulence. prc encodes a putative HtrA family protease that localizes in the bacterial periplasm. Mutation of prc also resulted in susceptibility to multiple environmental stresses, including H2O2, sodium dodecylsulfate, and osmolarity stresses. Comparative subproteomic analyses showed that the amounts of 34 periplasmic proteins were lower in the prc mutant than in wild-type. These proteins were associated with proteolysis, biosynthesis of macromolecules, carbohydrate or energy metabolism, signal transduction, and protein translocation or folding. We provide in vivo and in vitro evidences to demonstrate that Prc stabilizes and directly binds to one of these proteins, DppP, a dipeptidyl peptidase contributing to the full virulence. Taken together, our results suggest that Prc contributes to bacterial virulence by acting as a periplasmic modulator of cell envelope stress responses.
    Molecular Plant-Microbe Interactions 11/2013; 27(2). DOI:10.1094/MPMI-08-13-0234-R · 4.46 Impact Factor