Article

The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein.

Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/1996; 270(52):30853-6.
Source: PubMed

ABSTRACT Fe65 is a protein mainly expressed in several districts of the mammalian nervous system. The search of protein sequence data banks revealed that Fe65 contains two phosphotyrosine interaction (PID) or phosphotyrosine binding (PTB) domains, previously identified in the Shc adaptor molecule. The two putative PID/PTB domains of Fe65 were used to construct glutathione S-transferase-Fe65 fusion proteins. Co-precipitation experiments demonstrated that the Fe65 PID/PTB domains interacted with several proteins of apparent molecular mass 135, 115, 105, and 51 kDa. The region of Fe65 containing the PID/PTB domains was used as a bait to screen a human brain cDNA library in yeast by the two-hybrid system. Three different cDNA clones were isolated, two of which contain overlapping segments of the cDNA encoding the COOH terminus of the Alzheimer's beta-amyloid-precursor protein (APP), that represents the short intracellular domain of this membrane protein. The third clone contains a cDNA fragment coding for the COOH terminus of the human counterpart of a mouse beta-amyloid-like precursor protein. The alignment of the three APP encoding cDNA fragments found in the screening suggests that the region of APP involved in the binding is centered on the NPTY sequence, which is analogous to that present in the intracellular domains of the growth factor receptors interacting with the PID/PTB domain of Shc.

0 Followers
 · 
37 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and, like its closest homolog ABCA1, belongs to the ABCA subfamily of full-length ABC transporters. ABCA1 promotes cellular cholesterol efflux to lipid-free apolipoprotein acceptors and also inhibits the production of neurotoxic beta-amyloid (Abeta) peptides in vitro. The potential functions of ABCA7 in the brain are unknown. This study investigated the ability of ABCA7 to regulate cholesterol efflux to extracellular apolipoprotein acceptors and to modulate Abeta production. The transient expression of ABCA7 in human embryonic kidney cells significantly stimulated cholesterol efflux (fourfold) to apolipoprotein E (apoE) discoidal lipid complexes but not to lipid-free apoE or apoA-I. ABCA7 also significantly inhibited Abeta secretion from Chinese hamster ovary cells stably expressing human amyloid precursor protein (APP) or APP containing the Swedish K670M671-->N670L671 mutations when compared with mock-transfected cells. Studies with fluorogenic substrates indicated that ABCA7 had no impact on alpha-, beta-, or gamma-secretase activities. Live cell imaging of Chinese hamster ovary cells expressing APP-GFP indicated an apparent retention of APP in a perinuclear location in ABCA7 co-transfected cells. These studies indicate that ABCA7 has the capacity to stimulate cellular cholesterol efflux to apoE discs and regulate APP processing resulting in an inhibition of Abeta production.
    Journal of Neurochemistry 05/2008; 106(2):793-804. DOI:10.1111/j.1471-4159.2008.05433.x · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid precursor protein (APP) has been the subject of intense research to uncover its implication in Alzheimer's disease. Its physiological function is, however, still poorly understood. Herein, we investigated its possible influence on the development of cultured hippocampal neurons. A peptide corresponding to the APP intracellular domain linked to a cell-penetrating peptide was used to alter the interactions of APP with its cytosolic partners. This treatment promoted the concentration of the cytosolic GTPase dynamin 3 (Dyn3) in neurite segments when most untreated cells displayed a homogenous punctate distribution of Dyn3. The Dyn3-labelled segments were excluded from those revealed by APP staining after aldehyde fixation. Interestingly, after aldehyde fixation MAP2 also labelled segments excluded from APP-stained segments. Thus APP is also a marker for the spacing pattern of neurites demonstrated by Taylor & Fallon (2006)J. Neurosci., 26, 1154-4463.
    European Journal of Neuroscience 11/2006; 24(9):2439-43. DOI:10.1111/j.1460-9568.2006.05141.x · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a prerequisite for the generation of beta-amyloid peptides, the principle constituents of senile plaques in the brains of patients with Alzheimer's disease (AD). BACE1 expression and enzymatic activity are increased in the AD brain, but the regulatory mechanisms of BACE1 expression are largely unknown. Here we show that Yin Yang 1 (YY1), a highly conserved and multifunctional transcription factor, binds to its putative recognition sequence within the BACE1 promoter and stimulates BACE1 promoter activity in rat pheochromocytoma 12 (PC12) cells, rat primary neurones and astrocytes. In rat brain YY1 and BACE1 are widely expressed by neurons, but there was only a minor proportion of neurones that co-expressed YY1 and BACE1, suggesting that YY1 is not required for constitutive neuronal BACE1 expression. Resting astrocytes in the untreated rat brain did not display either YY1 or BACE1 immunoreactivity. When chronically activated, however, astrocytes expressed both YY1 and BACE1 proteins, indicating that YY1 is important for the stimulated BACE1 expression by reactive astrocytes. This is further emphasized by the expression of YY1 and BACE1 by reactive astrocytes in proximity to beta-amyloid plaques in the AD brain. Our observations suggest that interfering with expression, translocation or binding of YY1 to its BACE1 promoter-specific sequence may have therapeutic potential for treating patients with AD.
    Journal of Neurochemistry 04/2006; 96(6):1696-707. DOI:10.1111/j.1471-4159.2006.03692.x · 4.24 Impact Factor