Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer

Department of Pathology, Columbia University, New York, NY 10032, USA.
Blood (Impact Factor: 10.43). 03/1996; 87(3):1097-103.
Source: PubMed

ABSTRACT The identification of genes inducing resistance to anticancer chemotherapeutic agents and their introduction into hematopoietic cells represents a promising approach to overcome bone marrow toxicity, the limiting factor for most high-dose chemotherapy regimens. Because resistance to cyclophosphamide has been correlated with increased levels of expression of the aldehyde-dehydrogenase (ALDH1) gene in tumor cell lines in vitro, we tested whether ALDH1 overexpression could directly induce cyclophosphamide resistance. We have cloned a full-length human ALDH1 cDNA and used retroviral vectors to transduce it into human (U937) and murine (L1210) hematopoietic cell lines that were then tested for resistance to maphosphamide, an active analogue of cyclophosphamide. Overexpression of the ALDH1 gene resulted in a significant increases in cyclophosphamide resistance in transduced L1210 and U937 cells (50% inhibition concentration [IC50], approximately 13 mumol/L). The resistant phenotype was specifically caused by ALDH1 overexpression as shown by its reversion by disulfiram, a specific ALDH1 inhibitor. ALDH1 transduction into peripheral blood human hematopoietic progenitor cells also led to significant increases (4- to 10-fold; IC50, approximately 3 to 4 mumol/L) in cyclophosphamide resistance in an in vitro colony-forming assay. These findings indicate that ALDH1 overexpression is sufficient to induce cyclophosphamide resistance in vitro and provide a basis for testing the efficacy of ALDH1 gene transduction to protect bone marrow cells from high-dose cyclophosphamide in vivo.

  • Source
    • "However, after rapamycin treatment, the percentage of K7M2 cells with ALDH activity reduced significantly, compared to DMSO control group, and approached a level of activity more comparable to the less metastatic K12 cells (Figure 2(b)). After observing that rapamycin effectively reduced ALDH-1A1 expression and ALDH activity in K7M2 cells, we next wanted to investigate the effect of rapamycin treatment on K7M2 resistance to oxidative stress because the activity of ALDH in cancer may function to neutralize oxidative stress and provide chemoresistance [32] [33]. We tested resistance to oxidative stress using H 2 O 2 treatment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteosarcoma (OS) is the most common primary malignancy of bone. Mortality is determined by the presence of metastatic disease, but little is known regarding the biochemical events that drive metastases. Two murine OS cell lines, K7M2 and K12, are related but differ significantly in their metastatic potentials: K7M2 is highly metastatic whereas K12 displays much less metastatic potential. Using this experimental system, the mammalian target of rapamycin (mTOR) pathway has been implicated in OS metastasis. We also discovered that aldehyde dehydrogenase (ALDH, a stem cell marker) activity is higher in K7M2 cells than K12 cells. Rapamycin treatment reduces the expression and enzymatic activity of ALDH in K7M2 cells. ALDH inhibition renders these cells more susceptible to apoptotic death when exposed to oxidative stress. Furthermore, rapamycin treatment reduces bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) gene expression and inhibits K7M2 proliferation, migration, and invasion . Inhibition of ALDH with disulfiram correlated with decreased mTOR expression and activity. In conclusion, we provide evidence for interaction between mTOR activity, ALDH activity, and metastatic potential in murine OS cells. Our work suggests that mTOR and ALDH are therapeutic targets for the treatment and prevention of OS metastasis.
    Sarcoma 02/2013; 2013:480713. DOI:10.1155/2013/480713
  • Source
    • "Metabolic alterations also may contribute to drug resistance. Aldehyde dehydrogenase 1 (ALDH1) is overexpressed in leukemic stem cells (Pearce et al., 2005) and it was shown that ALDH1 gene transfer can lead to cyclophosphamide resistance in normal stem cells (Magni et al., 1996); so ALDH1 may also play a role in chemotherapy resistance. Normal stem cells are usually in a state of quiescence and do not exhaust their proliferative ability, unless the tissue encounters injury. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The cancer stem cell (CSC) model states that cancers are organized in cellular hierarchies, which explains the functional heterogeneity often seen in tumors. Like normal tissue stem cells, CSCs are capable of self-renewal, either by symmetric or asymmetric cell division, and have the exclusive ability to reproduce malignant tumors indefinitely. Current systemic cancer therapies frequently fail to eliminate advanced tumors, which may be due to their inability to effectively target CSC populations. It has been shown that embryonic pathways such as Wnt, Hedgehog, and Notch control self-renewal and cell fate decisions of stem cells and progenitor cells. These are evolutionary conserved pathways, involved in CSC maintenance. Targeting these p.
    Asian Pacific journal of cancer prevention: APJCP 12/2012; 13(12):5951-8. DOI:10.7314/APJCP.2012.13.12.5947 · 2.51 Impact Factor
  • Source
    • "K562 Human leukemia ALDH1A1 [209] [210] [211] U937 Human hematopoietic cells ALDH1A1 [208] MCF7/OAP Human breast adenocarcinoma ALDH3A1 [212] A549 Human lung cancer ALDH1A1 [213] V79 Chinese hamster lung fibroblasts ALDH1A1, ALDH3A1 [214] [215] [216] CD34 þ Human cord blood CD34 þ cells ALDH1A1 [217] PBPC Human peripheral blood hematopoietic progenitor cells ALDH3A1, ALDH1A1 [184,218] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors like dehydration and ultraviolet radiation. The ability to act as an 'aldehyde scavenger' during lipid peroxidation is another ostensibly universal ALDH function found across species. Up-regulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation) and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that significantly contributes to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, underscoring the fundamental importance of these enzymes in physiological and pathological processes.
    Free Radical Biology and Medicine 11/2012; DOI:10.1016/j.freeradbiomed.2012.11.010 · 5.71 Impact Factor
Show more