Article

Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein

Vollum Institute, Oregon Health Sciences University, Portland, 97201, USA.
Science (Impact Factor: 31.48). 04/1996; 271(5255):1589-92. DOI: 10.1126/science.271.5255.1589
Source: PubMed

ABSTRACT Multivalent binding proteins, such as the yeast scaffold protein Sterile-5, coordinate the location of kinases by serving as platforms for the assembly of signaling units. Similarly, in mammalian cells the cyclic adenosine 3',5'-monophosphate-dependent protein kinase (PKA) and phosphatase 2B [calcineurin (CaN)] are complexed by an A kinase anchoring protein, AKAP79. Deletion analysis and binding studies demonstrate that a third enzyme, protein kinase C (PKC), binds AKAP79 at a site distinct from those bound by PKA or CaN. The subcellular distributions of PKC and AKAP79 were similar in neurons. Thus, AKAP79 appears to function as a scaffold protein for three multifunctional enzymes.

Download full-text

Full-text

Available from: Maree C Faux, Jul 03, 2015
0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since nuclear factor of activated T cells (NFAT) was first identified as a transcription factor in T cells, various NFAT isoforms have been discovered and investigated. Accumulating studies have suggested that NFATs are involved in many aspects of cancer, including carcinogenesis, cancer cell proliferation, metastasis, drug resistance and tumor microenvironment. Different NFAT isoforms have distinct functions in different cancers. The exact function of NFAT in cancer or the tumor microenvironment is context dependent. In this review, we summarize our current knowledge of NFAT regulation and function in cancer development and treatment. NFATs have emerged as a potential target for cancer prevention and therapy. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Cancer Letters 03/2015; 361(2). DOI:10.1016/j.canlet.2015.03.005 · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A balance between cell survival and apoptosis is crucial to avoid neurodegeneration. Here, we analyzed whether the pro-apoptotic protein PKCδ, and the pro-survival PKCα and βII, were dysregulated in the brain of R6/1 mouse model of Huntington's disease (HD). Protein levels of the three PKCs examined were reduced in all the brain regions analyzed being PKCδ the most affected isoform. Interestingly, PKCδ protein levels were also decreased in the striatum and cortex of R6/2 and Hdh(Q111/Q111) mice, and in the putamen of HD patients. Nuclear PKCδ induces apoptosis, but we detected reduced PKCδ in both cytoplasmic and nuclear enriched fractions from R6/1 mouse striatum, cortex and hippocampus. In addition, we show that phosphorylation and ubiquitination of PKCδ are increased in 30-week-old R6/1 mouse brain. All together these results suggest a pro-survival role of reduced PKCδ levels in response to mutant huntingtin-induced toxicity. In fact, we show that over-expression of PKCδ increases mutant huntingtin-induced cell death in vitro, whereas over-expression of a PKCδ dominant negative form or silencing of endogenous PKCδ partially blocks mutant huntingtin-induced cell death. Finally, we show that the analysis of lamin B protein levels could be a good marker of PKCδ activity, but it is not involved in PKCδ-mediated cell death in mutant huntingtin-expressing cells. In conclusion, our results suggest that neurons increase the degradation of PKCδ as a compensatory pro-survival mechanism in response to mutant huntingtin-induced toxicity that can help to understand why cell death appears late in the disease.
    Neuromolecular medicine 07/2013; DOI:10.1007/s12017-013-8248-8 · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH-RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.
    The Journal of Cell Biology 11/2012; 199(4):639-51. DOI:10.1083/jcb.201111042 · 9.69 Impact Factor