Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family.

Radiation Biology Center, Kyoto University, Kyoto, Japan.
Science (Impact Factor: 31.03). 05/1996; 272(5258):109-12.
Source: PubMed

ABSTRACT Ultraviolet light (UV)-induced DNA damage can be repaired by DNA photolyase in a light-dependent manner. Two types of photolyase are known, one specific for cyclobutane pyrimidine dimers (CPD photolyase) and another specific for pyrimidine (6-4) pyrimidone photoproducts[(6-4)photolyase]. In contrast to the CPD photolyase, which has been detected in a wide variety of organisms, the (6-4)photolyase has been found only in Drosophila melanogaster. In the present study a gene encoding the Drosophila(6-4)photolyase ws cloned, and the deduced amino acid sequence of the product was found to be similar to the CPD photolyase and to the blue-light photoreceptor of plants. A homolog of the Drosophila (6-4)photolyase gene was also cloned from human cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Paramecium tetraurelia displayed two behavioral responses upon the initiation of a light stimulus at 7x104 lux. The cells exhibited a photophobic response in the form of behavioral avoiding reactions, followed by an increase in forward swimming velocity that was significantly higher than prior to the light stimulus activation. It was determined that an intensity of approximately 6.5x103 lux was required to initiate a moderate avoidance behavioral response. Following the avoiding response, a gradual increase in speed occurred as the intensity increased, indicating that increased swimming speeds are dependent on the light intensity. Two mutants, pawnA and Dancer, were utilized since they affect known Ca2+-currents of the cell. The use of pawnA cells, which lack voltage-dependent Ca2+ channel activity, showed that the two responses to light could be genetically separated, in that the cells showed no avoiding reactions, but did increase their swimming speed. The Dancer cells, which display exaggerated Ca2+ channel activity, exhibited similar initial avoiding responses as the wild type cells, however did not increase their swimming speed as the intensity of the light was increased. This phenotype as replicated in wildtype cells that had been placed in 25μM 8-Br-cGMP. These data demonstrate that the photophobic light response of Paramecium tetraurelia can be genetically dissected as a means of elucidating the molecular mechanisms of the light response.
    Protist 02/2013; · 4.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CRY proteins can be classified into several groups based on their phylogenetic relationships, and they function as a photoreceptor, a photolyase, and/or a transcriptional repressor of the circadian clock. In order to elucidate the expression profile and functional diversity of CRYs in vertebrates, we focused on XtCRY4, a member of the uncharacterized cryptochrome family CRY4 in Xenopus tropicalis. XtCRY4 cDNA was isolated by RT-PCR, and a phylogenetic analysis of deduced sequence of XtCRY4 suggested that the vertebrate Cry4 genes evolved at much higher evolutionary rates than mammalian-type Cry genes, such as the CRY1 and CRY2 circadian clock molecules. A transcriptional assay was performed to examine the transcriptional regulatory function as circadian repressor, and XtCRY4 had marginal effects on the transactivation of XtCLOCK/XtBMAL1 via E-box element. In situ hybridization and quantitative RT-PCR was performed to detect mRNA expression in native tissues. Quantitative RT-PCR revealed that XtCry4 mRNA was highly transcribed in the ovary. In situ hybridization showed the presence of XtCry4 transcripts in the oocytes, testis, renal tubules, the visual photoreceptors, and the retinal ganglion cells. A specific antiserum to XtCRY4 was developed to detect endogeneous expression of XtCRY4 protein in the ovary. The expression level was estimated by immunoblot analysis, and this is the first detection and estimation of endogenous expression of CRY protein in the ovary. These results suggest that X. tropicalis ovary may respond to blue-light by using XtCRY4.
    ZOOLOGICAL SCIENCE 03/2014; 31(3):152-9. · 1.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cryptochromes are flavoproteins that play a central role in the circadian oscillations of all living organisms except archaea. Cryptochromes are clustered into three subfamilies: plant-type cryptochromes, animal-type cryptochromes and cryptochrome-DASH proteins. These subfamilies are composed of photolyase/cryptochrome superfamily with 6-4 photolyase and cyclobutane pyrimidine dimer photolyase. Cryptochromes have conserved domain architectures with two distinct domains, an N-terminal photolyase-related domain and a C-terminal domain. Although the molecular function and domain architecture of cryptochromes are conserved, their molecular mechanisms differ between plants and animals. Thus, cryptochromes are one of the best candidates for comparative and evolutionary studies. Here, we have developed a Web-based platform for comparative and evolutionary studies of cryptochromes, dbCRY ( A pipeline built upon the consensus domain profile was applied to 1438 genomes and identified 1309 genes. To support comparative and evolutionary genomics studies, the Web interface provides diverse functions such as (i) browsing by species, (ii) protein domain analysis, (iii) multiple sequence alignment, (iv) homology search and (v) extended analysis opportunities through the implementation of 'Favorite Browser' powered by the Comparative Fungal Genomics Platform 2.0 (CFGP 2.0; dbCRY would serve as a standardized and systematic solution for cryptochrome genomics studies. Database URL:
    Database The Journal of Biological Databases and Curation 01/2014; 2014:bau037. · 4.20 Impact Factor