Canine blood groups and their importance in veterinary transfusion medicine.

Department of Pathology, College of Veterinary Medicine, Michigan State University, East Lansing, USA.
Veterinary Clinics of North America Small Animal Practice (Impact Factor: 1.43). 12/1995; 25(6):1323-32.
Source: PubMed

ABSTRACT Over 13 canine blood groups have been described. Eight DEA types are recognized as international standards. Typing sera produced by canine alloimmunization exists for six DEA types: 1.1, 1.2, 3, 4, 5, and 7. Naturally occurring antibody is found against DEA 3, 5, and 7. DEA 1.1 and 1.2 antibody-antigen interactions result in acute hemolytic transfusion reactions. DEA 3, 5, and 7 antibody-antigen interaction in vivo results in permanent red blood cell sequestration and loss in 3 to 5 days. DEA 4 antibody-antigen interactions produce no effect on red blood cell survival in vivo. A dog possessing DEA 4 and no other antigen is considered a "universal" donors. Veterinary transfusion medicine has advanced beyond uncrossmatched, untyped red blood cell transfusion. Whenever possible, transfusion should be between typed and crossmatched individuals. "Universal" donors and crossmatch should be utilized when typing of the recipient is not feasible. Canine blood typing is routinely performed in service laboratories across North America. In-clinic assays are not available for all canine blood group antigens. Recent production of monoclonal antibodies will lead to biochemical definition of the canine blood groups DEA 1.1 and 3. Additional efforts to define the erythrocytes on a molecular level are underway. Advances efforts in this areal will allow for more rapid and uniform testing of the canine red blood cell. Future exploration of DEA type and disease association is needed. A known association exists between DEA 1.1 and neonatal isoerythrolysis. Further screening of the dog population for DEA type may yield markers for autoimmune and neoplastic disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To compare accuracy and ease of use of a card agglutination assay, an immunochromatographic cartridge method, and a gel-based method for canine blood typing. Blood samples from 52 healthy blood donor dogs, 10 dogs with immune-mediated hemolytic anemia (IMHA), and 29 dogs with other diseases. Blood samples were tested in accordance with manufacturer guidelines. Samples with low PCVs were created by the addition of autologous plasma to separately assess the effects of anemia on test results. Compared with a composite reference standard of agreement between 2 methods, the gel-based method was found to be 100% accurate. The card agglutination assay was 89% to 91% accurate, depending on test interpretation, and the immunochromatographic cartridge method was 93% accurate but 100% specific. Errors were observed more frequently in samples from diseased dogs, particularly those with IMHA. In the presence of persistent autoagglutination, dog erythrocyte antigen (DEA) 1.1 typing was not possible, except with the immunochromatographic cartridge method. The card agglutination assay and immunochromatographic cartridge method, performed by trained personnel, were suitable for in-clinic emergency DEA 1.1 blood typing. There may be errors, particularly for samples from dogs with IMHA, and the immunochromatographic cartridge method may have an advantage of allowing typing of samples with persistent autoagglutination. The laboratory gel-based method would be preferred for routine DEA 1.1 typing of donors and patients if it is available and time permits. Current DEA 1.1 typing techniques appear to be appropriately standardized and easy to use.
    American Journal of Veterinary Research 02/2012; 73(2):213-9. · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In transfusion medicine, blood typing is an integral part of pretransfusion testing. The objective of the current study was the clinical evaluation of an automated canine cartridge dog erythrocyte antigen (DEA) 1.1 blood-typing method (QuickVet/RapidVet) and comparison of the results with a gel column-based method (ID-Gel Test Canine DEA 1.1). Ethylenediamine tetra-acetic acid-anticoagulated blood samples from 11 healthy and 85 sick dogs were available for typing. Before blood typing, all samples were tested for agglutination and hemolysis. All samples were tested once or multiple times with both methods according to the manufacturer's guidelines. With the gel method, 53 dogs tested DEA 1.1 positive and 42 dogs DEA 1.1 negative; blood typing was not possible due to erythrocyte autoagglutination in 1 dog. With the cartridge test, 53 samples tested DEA 1.1 positive, 34 samples tested DEA 1.1 negative, and 6 results were inconclusive (3 samples were not included due to autoagglutination or severe hemolysis). Without taking the inconclusive samples into account, the agreement between both methods was 96.5%. The sensitivity and specificity for samples that were definitively typed by both methods were 100% and 91.9%, respectively. The cartridge test was suitable for in-clinic canine DEA 1.1 blood typing, although some discrepancies compared to the gel method existed. The cartridge test is software-directed, is easy to use, and does not require user interpretation, but preanalytical guidelines (sample evaluation for agglutination and hemolysis) have to be followed. For inconclusive results, an alternate blood-typing method should be performed.
    Journal of veterinary diagnostic investigation: official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc 05/2012; 24(3):539-45. · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Dog erythrocyte antigen (DEA) 1 blood group system was thought to contain types DEA 1.1 and 1.2 (and possibly 1.3 [A3 ]). However, DEA 1.2+ dogs are very rare and newer typing methods reveal varying degrees of DEA 1 positivity. To assess if variation in DEA 1 positivity is because of quantitative differences in surface antigen expression. To determine expression patterns in dogs over time and effects of blood storage (4°C). To evaluate DEA 1.2+ samples by DEA 1 typing methods. Anticoagulated blood samples from 66 dogs in a research colony and from a hospital, and 9 previously typed DEA 1.2+ dogs from an animal blood bank. Research study: Samples were analyzed by flow cytometry and immunochromatographic strip using a monoclonal anti-DEA 1 antibody. Twenty dogs were DEA 1-, whereas 46 dogs were weakly to strongly DEA 1+. Antigen quantification revealed excellent correlation between strip and flow cytometry (r = 0.929). Both methods reclassified DEA 1.2+ samples as weakly to moderately DEA 1+, but they were not retyped with the polyclonal anti-DEA 1.1/1.X antibodies. Dogs and blood samples retained their relative DEA 1 antigen densities over time. The blood group system DEA 1 is a continuum from negative to strongly positive antigen expression. Previously typed DEA 1.2+ appears to be DEA 1+. These findings further the understanding of the DEA 1 system and suggest that all alleles within the DEA 1 system have a similarly based epitope recognized by the monoclonal antibody.
    Journal of Veterinary Internal Medicine 02/2014; · 2.06 Impact Factor