Quantitative Magnetic Resonance Imaging of Human Brain Development: Ages 4–18

National Institute of Mental Health, Child Psychiatry Branch, Bethesda, MD 20892-1600, USA.
Cerebral Cortex (Impact Factor: 8.31). 07/1996; 6(4):551-60. DOI: 10.1093/cercor/6.4.551
Source: PubMed

ABSTRACT Brain magnetic resonance images (MRI) of 104 healthy children and adolescents, age 4-18, showed significant effects of age and gender on brain morphometry. Males had larger cerebral (9%) and cerebellar (8%) volumes (P < 0.0001 and P = 0.008, respectively), which remained significant even after correction for height and weight. After adjusting for cerebral size, the putamen and globus pallidus remained larger in males, while relative caudate size was larger in females. Neither cerebral nor cerebellar volume changed significantly across this age range. Lateral ventricular volume increased significantly in males (trend for females), with males showing an increase in slope after age 11. In males only, caudate and putamen decrease with age (P = 0.007 and 0.05, respectively). The left lateral ventricles and putamen were significantly greater than the right (P = 0.01 and 0.001, respectively). In contrast, the cerebral hemispheres and caudate showed a highly consistent right-greater-than-left asymmetry (P < 0.0001 for both). All volumes demonstrated a high degree of variability. These findings highlight gender-specific maturational changes of the developing brain and the need for large gender-matched samples in pediatric neuropsychiatric studies.

Download full-text


Available from: John W. Snell, Jun 21, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the impairments associated with autism spectrum disorder (ASD) tend to persist or worsen from childhood into adulthood, it is of critical importance to examine how the brain develops over this growth epoch. We report initial findings on whole and regional longitudinal brain development in 100 male participants with ASD (226 high-quality magnetic resonance imaging [MRI] scans; mean inter-scan interval 2.7 years) compared to 56 typically developing controls (TDCs) (117 high-quality scans; mean inter-scan interval 2.6 years) from childhood into adulthood, for a total of 156 participants scanned over an 8-year period. This initial analysis includes between one and three high-quality scans per participant that have been processed and segmented to date, with 21% having one scan, 27% with two scans, and 52% with three scans in the ASD sample; corresponding percentages for the TDC sample are 30%, 30%, and 40%. The proportion of participants with multiple scans (79% of ASDs and 68% of TDCs) was high in comparison to that of large longitudinal neuroimaging studies of typical development. We provide volumetric growth curves for the entire brain, total gray matter (GM), frontal GM, temporal GM, parietal GM, occipital GM, total cortical white matter (WM), corpus callosum, caudate, thalamus, total cerebellum, and total ventricles. Mean volume of cortical WM was reduced significantly. Mean ventricular volume was increased in the ASD sample relative to the TDCs across the broad age range studied. Decreases in regional mean volumes in the ASD sample most often were due to decreases during late adolescence and adulthood. The growth curve of whole brain volume over time showed increased volumes in young children with autism, and subsequently decreased during adolescence to meet the TDC curve between 10 and 15 years of age. The volume of many structures continued to decline atypically into adulthood in the ASD sample. The data suggest that ASD is a dynamic disorder with complex changes in whole and regional brain volumes that change over time from childhood into adulthood. Autism Res 2014, ●●: ●●–●●. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.
    Autism Research 12/2014; 8(1). DOI:10.1002/aur.1427 · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus supports several important cognitive functions known to undergo substantial development during childhood and adolescence, for example, encoding and consolidation of vivid personal memories. However, diverging developmental effects on hippocampal volume have been observed across studies. It is possible that the inconsistent findings may attribute to varying developmental processes and functions related to different hippocampal subregions. Most studies to date have measured global hippocampal volume. We aimed to explore early hippocampal development both globally and regionally within subfields. Using cross-sectional 1.5 T magnetic resonance imaging data from 244 healthy participants aged 4-22 years, we performed automated hippocampal segmentation of seven subfield volumes; cornu ammonis (CA) 1, CA2/3, CA4/dentate gyrus (DG), presubiculum, subiculum, fimbria, and hippocampal fissure. For validation purposes, seven subjects were scanned at both 1.5 and 3 T, and all subfields except fimbria showed strong correlations across field strengths. Effects of age, left and right hemisphere, sex and their interactions were explored. Nonparametric local smoothing models (smoothing spline) were used to depict age-trajectories. Results suggested nonlinear age functions for most subfields where volume increases until 13-15 years, followed by little age-related changes during adolescence. Further, the results showed greater right than left hippocampal volumes that seemed to be augmenting in older age. Sex differences were also found for subfields; CA2/3, CA4/DG, presubiculum, subiculum, and CA1, mainly driven by participants under 13 years. These results provide a detailed characterization of hippocampal subfield development from early childhood. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 11/2014; 35(11). DOI:10.1002/hbm.22576 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The global use of methamphetamine (MA) has increased substantially in recent years, but the effect of MA on brain structure in prenatally exposed children is understudied. Here we aimed to investigate potential changes in brain volumes and cortical thickness of children with prenatal MA-exposure compared to unexposed controls. Eighteen 6-year old children with MA-exposure during pregnancy and 18 healthy controls matched for age, gender and socio-economic background underwent structural imaging. Brain volumes and cortical thickness were assessed using Freesurfer and compared using ANOVA. Left putamen volume was significantly increased, and reduced cortical thickness was observed in the left hemisphere of the inferior parietal, parsopercularis and precuneus areas of MA-exposed children compared to controls. Compared to control males, prenatal MA-exposed males had greater volumes in striatal and associated areas, whereas MA-exposed females predominantly had greater cortical thickness compared to control females. In utero exposure to MA results in changes in the striatum of the developing child. In addition, changes within the striatal, frontal, and parietal areas are in part gender dependent.
    Metabolic Brain Disease 02/2014; 29(2). DOI:10.1007/s11011-014-9500-0 · 2.40 Impact Factor