Article

Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling.

Department of Physiology, Tulane University Medical Center, New Orleans, Louisiana 70112-2699, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 09/1996; 271(33):19810-6. DOI: 10.1074/jbc.271.33.19810
Source: PubMed

ABSTRACT To understand the physiological role of protein-tyrosine phosphatase 1B (PTPase 1B) in insulin and insulin-like growth factor-I (IGF-I) signaling, we established clonal cell lines overexpressing wild type or inactive mutant (C215S) PTPase 1B in cells overexpressing insulin (Hirc) or IGF-I (CIGFR) receptors. PTPase 1B overexpression in transfected cells was verified by immunoblot analysis with a monoclonal PTPase 1B antibody. Subfractionation of parental cells demonstrated that greater than 90% of PTPase activity was localized in the Triton X-100-soluble particulate (P1) cell fraction. PTPase activity in the P1 fraction of cells overexpressing wild type PTPase 1B was 3-6-fold higher than parental cells but was unaltered in all fractions from C215S PTPase 1B-containing cells. The overexpression of wild type and C215S PTPase 1B had no effects on intrinsic receptor kinase activity, growth rate, or general cell morphology. The effects of PTPase 1B overexpression on cellular protein tyrosine phosphorylation were examined by anti-phosphotyrosine immunoblot analysis. No differences were apparent under basal conditions, but hormone-stimulated receptor autophosphorylation and/or insulin receptor substrate tyrosine phosphorylation were inhibited in cells overexpressing wild type PTPase 1B and increased in cells expressing mutant PTPase 1B, in comparison with parental cells. Metabolic signaling, assessed by ligand-stimulated [14C]glucose incorporation into glycogen, was also inhibited in cells overexpressing active PTPase 1B and enhanced in cells containing C215S PTPase 1B. These data strongly suggest that PTPase 1B acts as a negative regulator of insulin and IGF-I signaling.

0 Followers
 · 
49 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal protein tyrosine phosphatase 1B (PTP1B) deficiency in mice results in enhanced leptin signaling and protection from diet-induced obesity; however, whether additional signaling pathways in the brain contribute to the metabolic effects of PTP1B deficiency remains unclear. Here we show that the tropomyosin receptor kinase B (TrkB) receptor is a direct PTP1B substrate and implicate PTP1B in the regulation of the central brain-derived neurotrophic factor (BDNF) signaling. PTP1B interacts with activated TrkB receptor in mouse brain and human SH-SY5Y neuroblastoma cells. PTP1B overexpression reduces TrkB phosphorylation and activation of downstream signaling pathways whereas PTP1B inhibition augments TrkB signaling. Notably, hypothalami from Ptpn1-/- mice exhibit enhanced TrkB phosphorylation, and Ptpn1-/- mice are hypersensitive to central BDNF-induced increase in core temperature. Taken together, our findings demonstrate that PTP1B is a novel physiological regulator of TrkB and that enhanced BDNF/TrkB signaling may contribute to the beneficial metabolic effects of PTP1B deficiency.
    Journal of Biological Chemistry 10/2014; DOI:10.1074/jbc.M114.603621 · 4.60 Impact Factor
  • The International Journal of Biochemistry & Cell Biology 02/2015; DOI:10.1016/j.biocel.2015.01.019 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Activation of the PI3K/Akt pathway mediates crucial cellular functions regulated by receptor tyrosine kinases, such as cell growth, proliferation, survival and metabolism. Previously, we reported that the whole-body knockout of the Src homology domain-containing adaptor protein Nck1 improves overall glucose homeostasis and insulin-induced activation of the PI3K/Akt pathway in liver of obese mice. The aim of the current study is to elucidate the mechanism by which Nck1 depletion regulates hepatic insulin signaling.ResultsHere, we demonstrate that Nck1 regulates the activation of the PI3K/Akt pathway in a protein tyrosine phosphatase 1B (PTP1B)-dependent mechanism. Indeed, depletion of Nck1 by siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation. In accordance, primary hepatocytes isolated from Nck1 ¿/¿ mice also display enhanced Akt activation in response to insulin. Activation of the PI3K/Akt pathway in Nck1-depleted HepG2 cells relies on higher levels of tyrosine-phosphorylated proteins and correlates with decreased PTP1B levels. Interestingly, Nck1 and PTP1B in cells are found in a common molecular complex and their interaction is dependent on the SH3 domains of Nck1. Finally, Nck1 depletion in HepG2 cells neither affects PTP1B gene transcription nor PTP1B protein stability, suggesting that Nck1 modulates PTP1B expression at the translational level.Conclusion Our study provides strong evidence supporting that the adaptor protein Nck1 interacts with PTP1B and also regulates PTP1B expression. In this manner, Nck1 plays a role in regulating the PI3K/Akt pathway.
    Cell Communication and Signaling 11/2014; 12(1):71. DOI:10.1186/PREACCEPT-1228634217131747 · 4.67 Impact Factor