Article

Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction

Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/1996; 93(16):8733-8. DOI: 10.1073/pnas.93.16.8733
Source: PubMed

ABSTRACT We applied the directional tag PCR subtractive hybridization method to construct a rat hypothalamic cDNA library from which cerebellar and hippocampal sequences had been depleted, enriching 20-30-fold for sequences expressed selectively in the hypothalamus. We studied a sample of 94 clones selected for enrichment in the subtracted library. These clones corresponded to 43 distinct mRNA species, about half of which were novel. Thirty-eight of these 43 mRNAs (corresponding to 85 of the clones in the sample) exhibited enrichment in the hypothalamus; 23 were highly enriched. In situ hybridization studies revealed that one novel species was restricted to cells in a small bilaterally symmetric area of the paraventricular hypothalamus. Other novel mRNAs showed substantial enrichment in basal diencephalic structures, particularly the hypothalamus, without restriction to single hypothalamic nuclei. The data suggest that the hypothalamus utilizes at least two distinct strategies for employing its selectively expressed proteins. Secretory neuropeptides utilized for intercellular communication are produced by functionally discrete nuclei, while several other proteins are shared by structures that are unrelated in their physiological roles but may share biochemical systems.

Download full-text

Full-text

Available from: Luis de Lecea, Aug 18, 2015
0 Followers
 · 
68 Views
  • Source
    • "Cocaine dependence in humans is characterized by persistent drug use despite negative consequences and high rates of relapse to drug-taking behavior following intermittent periods of abstinence (Dackis and O'Brien, 2001). Hypocretin-1 (Hcrt-1) and hypocretin-2 (Hcrt-2), also known as orexin-A (OX A ) and orexin-B (OX B ), are lateral hypothalamic (LH) neuropeptides that have garnered much attention since their discovery in the late 1990s (Gautvik et al., 1996; De Lecea et al., 1998; Sakurai et al., 1998). While originally considered important regulators of metabolic, circadian, and stress systems (Lubkin and Stricker- Krongrad, 1998; Van Den Pol et al., 2001; Szekely, 2006), hypocretin transmission is emerging as a key signaling mechanism in relapse to drug-seeking during periods of abstinence (Dileone et al., 2003; Harris et al., 2005; Aston-Jones et al., 2009; Borgland et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Considerable evidence suggests that transmission at hypocretin-1 (orexin-1) receptors (Hcrt-R1) plays an important role in the reinstatement of extinguished cocaine-seeking behaviors in rodents. However, far less is known about the role for hypocretin transmission in regulating ongoing cocaine-taking behavior. Here, we investigated the effects of the selective Hcrt-R1 antagonist SB-334867 on cocaine intake, as measured by intravenous (IV) cocaine self-administration in rats. The stimulatory effects of cocaine on brain reward systems contribute to the establishment and maintenance of cocaine-taking behaviors. Therefore, we also assessed the effects of SB-334867 on the reward-enhancing properties of cocaine, as measured by cocaine-induced lowering of intracranial self-stimulation (ICSS) thresholds. Finally, to definitively establish a role for Hcrt-R1 in regulating cocaine intake, we assessed IV cocaine self-administration in Hcrt-R1 knockout mice. We found that SB-334867 (1-4 mg/kg) dose-dependently decreased cocaine (0.5 mg/kg/infusion) self-administration in rats but did not alter responding for food rewards under the same schedule of reinforcement. This suggests that SB-334867 decreased cocaine reinforcement without negatively impacting operant performance. SB-334867 (1-4 mg/kg) also dose-dependently attenuated the stimulatory effects of cocaine (10 mg/kg) on brain reward systems, as measured by reversal of cocaine-induced lowering of ICSS thresholds in rats. Finally, we found that Hcrt-R1 knockout mice self-administered far less cocaine than wildtype mice across the entire dose-response function. These data demonstrate that Hcrt-R1 play an important role in regulating the reinforcing and reward-enhancing properties of cocaine and suggest that hypocretin transmission is likely essential for establishing and maintaining the cocaine habit in human addicts.
    Frontiers in Behavioral Neuroscience 07/2012; 6:47. DOI:10.3389/fnbeh.2012.00047 · 4.16 Impact Factor
  • Source
    • "Orexin A (OXA) is produced by a small group of neurons specifically located within and around the lateral hypothalamus (LH) (de Lecea et al. 1998). Like OXB, OXA is a neuropeptide encoded by mRNA which accumulates primarily after the third postnatal week (Gautvik et al. 1996). OXA is a 33-amino acid peptide, the sequence of which is identical in human, rat, mouse, and bovine (Sakurai et al. 1998). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Orexin A (OXA) is an excitatory hypothalamic neurotransmitter and ligand for Orexin Receptor-1 (OR1), isolated from a small group of hypothalamic neurons. OXA orchestrates different brain functions, and at the cognitive level some of the effects of insufficiency of OXA are well-known, for example in Parkinson's disease. It is widely assumed that deteriorated cognitive processes are related to impaired network connectivity. However, little is known about the effects of OXA in network connectivity and synaptogenesis. Therefore, to obtain insight into this problem we designed experiments with two groups of networks of dissociated cortical neurons: one group incubated in a plain medium and another chronically treated with OXA. After 1, 2, 3 or 4 weeks in vitro we applied immunocytochemistry for detection of OXA, OR1, and synaptic marker synaptophysin. Shortly after plating, 91 ± 8% of the neurons cultivated in a plain medium expressed OXA-immunoreactivity, which does normally not occur in vivo indicating that neurons may change their phenotype under non-natural culture conditions to develop synaptically coupled networks. The fraction of orexinergic neurons decreased to 33 ± 21% after 4 weeks in vitro. OXA expression was highest in the first week of network formation, the period of maximum synaptogenesis, and then decreased and stabilized in the weeks thereafter. Our hypothesis that OXA plays a role in the network development as a synaptogenic factor was supported by higher levels, earlier onset, and sustained increase of synaptophysin expression in experiments with chronic OXA application to the culture medium.
    Cellular and Molecular Neurobiology 01/2012; 32(1):49-57. DOI:10.1007/s10571-011-9733-y · 2.20 Impact Factor
  • Source
    • "The receptor(s) for CART peptides have not been identified, but in vitro studies have shown that CART fragments bind to AtT20 cells and activate extracellular regulated kinase (ERK) signaling via a G-protein-coupled receptor (Lakatos et al., 2005; Vicentic et al., 2005, 2006). Neuroanatomical studies in rodents have shown that CART and CART peptides are widely distributed throughout the brain (Couceyro et al., 1997; Koylu et al., 1997, 1998) and are one of the most abundant transcripts in the rodent hypothalamus (Gautvik et al., 1996). In the hypothalamus, CART is expressed mainly by neurons located in nuclei involved in energy balance and autonomic regulation; these nuclei include the arcuate nucleus (Arc), the dorsomedial nucleus (DMH), the paraventricular nucleus (PVH), and the lateral hypothalamic area (LHA) (Koylu et al., 1997). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine- and amphetamine-regulated transcript (CART) is widely distributed in the brain of many species. In the hypothalamus, CART neurotransmission has been implicated in diverse functions including energy balance, stress response, and temperature and endocrine regulation. Although some studies have been performed in primates, very little is known about the distribution of CART neurons in New World monkeys. New World monkeys are good models for systems neuroscience, as some species have evolved several behavioral and anatomical characteristics shared with humans, including diurnal and social habits, intense maternal care, complex manipulative abilities and well-developed frontal cortices. In the present study, we assessed the distribution of CART mRNA and peptide in the hypothalamus of the capuchin monkey (Cebus apella) and the common marmoset (Callithrix jacchus). We found that the distribution of hypothalamic CART neurons in these monkeys is similar to what has been described for rodents and humans, but some relevant differences were noticed. Only in capuchin monkeys CART neurons were observed in the suprachiasmatic and the intercalatus nuclei, whereas only in marmoset CART neurons were observed in the dorsal anterior nucleus. We also found that the only in marmoset displayed CART neurons in the periventricular preoptic nucleus and in an area seemingly comprising the premammillary nucleus. These hypothalamic sites are both well defined in rodents but poorly defined in humans. Our findings indicate that CART expression in hypothalamic neurons is conserved across species but the identified differences suggest that CART is also involved in the control of species-specific related functions.
    Brain research 11/2011; 1425:47-61. DOI:10.1016/j.brainres.2011.09.020 · 2.83 Impact Factor
Show more