Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction

Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 09/1996; 93(16):8733-8. DOI: 10.1073/pnas.93.16.8733
Source: PubMed


We applied the directional tag PCR subtractive hybridization method to construct a rat hypothalamic cDNA library from which cerebellar and hippocampal sequences had been depleted, enriching 20-30-fold for sequences expressed selectively in the hypothalamus. We studied a sample of 94 clones selected for enrichment in the subtracted library. These clones corresponded to 43 distinct mRNA species, about half of which were novel. Thirty-eight of these 43 mRNAs (corresponding to 85 of the clones in the sample) exhibited enrichment in the hypothalamus; 23 were highly enriched. In situ hybridization studies revealed that one novel species was restricted to cells in a small bilaterally symmetric area of the paraventricular hypothalamus. Other novel mRNAs showed substantial enrichment in basal diencephalic structures, particularly the hypothalamus, without restriction to single hypothalamic nuclei. The data suggest that the hypothalamus utilizes at least two distinct strategies for employing its selectively expressed proteins. Secretory neuropeptides utilized for intercellular communication are produced by functionally discrete nuclei, while several other proteins are shared by structures that are unrelated in their physiological roles but may share biochemical systems.

Download full-text


Available from: Luis de Lecea,
  • Source
    • "Oxytocin is synthesized in the hypothalamus from where it is widely distributed in the brain [29]. In addition, oxytocin is released into the bloodstream by the pituitary gland where it acts as a hormone and stimulates smooth muscle tissue contraction in e.g. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Currently few evidence based interventions are available for the prevention of PTSD within the first weeks after trauma. Increased risk for PTSD development is associated with dysregulated fear and stress responses prior to and shortly after trauma, as well as with a lack of perceived social support early after trauma. Oxytocin is a potent regulator of these processes. Therefore, we propose that oxytocin may be important in reducing adverse consequences of trauma. The 'BONDS' study is conducted in order to assess the efficacy of an early intervention with intranasal oxytocin for the prevention of PTSD. In this multicenter double-blind randomized placebo-controlled trial we will recruit 220 Emergency Department patients at increased risk of PTSD. Trauma-exposed patients are screened for increased PTSD risk with questionnaires assessing peri-traumatic distress and acute PTSD symptoms within 7 days after trauma. Baseline PTSD symptom severity scores and neuroendocrine and psychophysiological measures will be collected within 10 days after trauma. Participants will be randomized to 7.5 days of intranasal oxytocin (40 IU) or placebo twice a day. Follow-up measurements at 1.5, 3 and 6 months post-trauma are collected to assess PTSD symptom severity (the primary outcome measure). Other measures of symptoms of psychopathology, and neuroendocrine and psychophysiological disorders are secondary outcome measures. We hypothesize that intranasal oxytocin administered early after trauma is an effective pharmacological strategy to prevent PTSD in individuals at increased risk, which is both safe and easily applicable. Interindividual and contextual factors that may influence the effects of oxytocin treatment will be considered in the analysis of the results.Trial registration: Netherlands Trial Registry: NTR3190.
    BMC Psychiatry 03/2014; 14(1):92. DOI:10.1186/1471-244X-14-92 · 2.21 Impact Factor
  • Source
    • "Cocaine dependence in humans is characterized by persistent drug use despite negative consequences and high rates of relapse to drug-taking behavior following intermittent periods of abstinence (Dackis and O'Brien, 2001). Hypocretin-1 (Hcrt-1) and hypocretin-2 (Hcrt-2), also known as orexin-A (OX A ) and orexin-B (OX B ), are lateral hypothalamic (LH) neuropeptides that have garnered much attention since their discovery in the late 1990s (Gautvik et al., 1996; De Lecea et al., 1998; Sakurai et al., 1998). While originally considered important regulators of metabolic, circadian, and stress systems (Lubkin and Stricker- Krongrad, 1998; Van Den Pol et al., 2001; Szekely, 2006), hypocretin transmission is emerging as a key signaling mechanism in relapse to drug-seeking during periods of abstinence (Dileone et al., 2003; Harris et al., 2005; Aston-Jones et al., 2009; Borgland et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Considerable evidence suggests that transmission at hypocretin-1 (orexin-1) receptors (Hcrt-R1) plays an important role in the reinstatement of extinguished cocaine-seeking behaviors in rodents. However, far less is known about the role for hypocretin transmission in regulating ongoing cocaine-taking behavior. Here, we investigated the effects of the selective Hcrt-R1 antagonist SB-334867 on cocaine intake, as measured by intravenous (IV) cocaine self-administration in rats. The stimulatory effects of cocaine on brain reward systems contribute to the establishment and maintenance of cocaine-taking behaviors. Therefore, we also assessed the effects of SB-334867 on the reward-enhancing properties of cocaine, as measured by cocaine-induced lowering of intracranial self-stimulation (ICSS) thresholds. Finally, to definitively establish a role for Hcrt-R1 in regulating cocaine intake, we assessed IV cocaine self-administration in Hcrt-R1 knockout mice. We found that SB-334867 (1-4 mg/kg) dose-dependently decreased cocaine (0.5 mg/kg/infusion) self-administration in rats but did not alter responding for food rewards under the same schedule of reinforcement. This suggests that SB-334867 decreased cocaine reinforcement without negatively impacting operant performance. SB-334867 (1-4 mg/kg) also dose-dependently attenuated the stimulatory effects of cocaine (10 mg/kg) on brain reward systems, as measured by reversal of cocaine-induced lowering of ICSS thresholds in rats. Finally, we found that Hcrt-R1 knockout mice self-administered far less cocaine than wildtype mice across the entire dose-response function. These data demonstrate that Hcrt-R1 play an important role in regulating the reinforcing and reward-enhancing properties of cocaine and suggest that hypocretin transmission is likely essential for establishing and maintaining the cocaine habit in human addicts.
    Frontiers in Behavioral Neuroscience 07/2012; 6:47. DOI:10.3389/fnbeh.2012.00047 · 3.27 Impact Factor
  • Source
    • "Insomnia remains an unmet medical need, requiring novel approaches for treatment with new mechanisms of action. The orexin neuropeptides (also known as hypocretins) were first discovered through genetic studies investigating hypothalamic signaling, and subsequently found to regulate arousal and sleep/wake control (Bonnavion and de Lecea, 2010; de Lecea et al., 1998; Gautvik et al., 1996; Lin et al., 1999; Sakurai et al., 2010; Scammell and Winrow, 2011). Prepro-orexin peptide is cleaved to form two orexin peptides (OX-A and OX-B) which activate a pair of G-protein coupled receptors, Orexin 1 Receptor (OX 1 R) and Orexin 2 Receptor (OX 2 R). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Orexin (hypocretin) neuropeptides promote wakefulness by signaling through two G-protein coupled receptors, Orexin 1 Receptor (OX(1)R) and Orexin 2 Receptor (OX(2)R). MK-6096 is an orally bioavailable potent and selective reversible antagonist of OX(1)R and OX(2)R currently in clinical development for insomnia. In radioligand binding and functional cell based assays MK-6096 demonstrated potent binding and antagonism of both human OX(1)R and OX(2)R (<3 nM in binding, 11 nM in FLIPR), with no significant off-target activities against a panel of >170 receptors and enzymes. MK-6096 occupies 90% of human OX(2)Rs expressed in transgenic rats at a plasma concentration of 142 nM, and dose-dependently reduced locomotor activity and significantly increased sleep in rats (3-30 mg/kg) and dogs (0.25 and 0.5 mg/kg). DORA-22, an analog of MK-6096, exhibits similar sleep promoting properties that are absent OX(1/2)R double knockouts, demonstrating the mechanism of action and specificity of these effects. These findings with a novel, structurally distinct class of OxR antagonists provide further validation of the orexin pathway as an effective target to promote normal sleep. Comparative analysis of the biochemical and pharmacokinetic properties of these compounds relative to other OXR antagonists provides a basis for understanding the attributes critical for in vivo efficacy. This mechanism is distinct from current standard of care such that MK-6096 represents a novel and selective therapeutic for the treatment of insomnia. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
    Neuropharmacology 02/2012; 62(2):978-87. DOI:10.1016/j.neuropharm.2011.10.003 · 5.11 Impact Factor
Show more