Article

Monosynaptic projections from the nucleus tractus solitarii to C1 adrenergic neurons in the rostral ventrolateral medulla: comparison with input from the caudal ventrolateral medulla.

Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA.
The Journal of Comparative Neurology (Impact Factor: 3.66). 10/1996; 373(1):62-75. DOI: 10.1002/(SICI)1096-9861(19960909)373:1<62::AID-CNE6>3.0.CO;2-B
Source: PubMed

ABSTRACT The rostral ventrolateral medulla (RVL) contains reticulospinal adrenergic (C1) neurons that are thought to be sympathoexcitatory and that form the medullary efferent limb of the baroreceptor reflex pathway. The RVL receives direct projections from two important autonomic regions, the caudal ventrolateral medulla (CVL) and the nucleus tractus solitarii with immunocytochemical identification of C1 adrenergic neurons in the RVL to compare the morphology of afferent input from these two autonomic regions into the RVL. NTS (n = 203) and CVL (n = 380) efferent terminals had similar morphology and vesicular content, but CVL efferent terminals were slightly larger than NTS efferent terminals. Overall, efferent terminals from either region were equally likely to contact adrenergic neurons in the RVL (21% for NTS, 25% for CVL). Although efferents from both regions formed both symmetric and asymmetric synapses, NTS efferent terminals were statistically more likely to form asymmetric synapses than CVL efferent terminals. CVL efferent terminals were more likely to contact adrenergic somata than were NTS efferents, which usually contacted dendrites. These findings 1) support the hypothesis that a portion of NTS efferents to the RVL may be involved in sympathoexcitatory, e.g., chemoreceptor, reflexes (via asymmetric synapses), whereas those from the CVL mediate sympathoinhibition (via symmetric synapses); and 2) provide an anatomical substrate for differential postsynaptic modulation of C1 neurons by projections from the NTS and CVL. With their more frequent somatic localization, CVL inhibitory inputs may be more influential than excitatory NTS inputs in determining the discharge of RVL neurons.

0 Bookmarks
 · 
36 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucose is an essential metabolic substrate for all bodily tissues. The brain depends particularly on a constant supply of glucose to satisfy its energy demands. Fortunately, a complex physiological system has evolved to keep blood glucose at a constant level. The consequences of poor glucose homeostasis are well-known: hyperglycemia associated with uncontrolled diabetes can lead to cardiovascular disease, neuropathy and nephropathy, while hypoglycemia can lead to convulsions, loss of consciousness, coma, and even death. The glucose counterregulatory response involves detection of declining plasma glucose levels and secretion of several hormones including glucagon, adrenaline, cortisol, and growth hormone (GH) to orchestrate the recovery from hypoglycemia. Low blood glucose leads to a low brain glucose level that is detected by glucose-sensing neurons located in several brain regions such as the ventromedial hypothalamus, the perifornical region of the lateral hypothalamus, the arcuate nucleus (ARC), and in several hindbrain regions. This review will describe the importance of the glucose counterregulatory system and what is known of the neurocircuitry that underpins it.
    Frontiers in Neuroscience 01/2014; 8:38.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic neurons, culminating with the emergence of entrained cardiovascular and respiratory reflex responses. Studies have proposed that the ventrolateral region of the medulla oblongata is a major site of synaptic interaction between respiratory and sympathetic neurons. However, other brainstem regions also play a relevant role in the patterning of respiratory and sympathetic motor outputs. Recent findings suggest that the neurons of the nucleus of the solitary tract (NTS), in the dorsal medulla, are essential for the processing and coordination of respiratory and sympathetic responses to hypoxia. The NTS is the first synaptic station of the cardiorespiratory afferent inputs, including peripheral chemoreceptors, baroreceptors and pulmonary stretch receptors. The synaptic profile of the NTS neurons receiving the excitatory drive from afferent inputs is complex and involves distinct neurotransmitters, including glutamate, ATP and acetylcholine. In the present review we discuss the role of the NTS circuitry in coordinating sympathetic and respiratory reflex responses. We also analyze the neuroplasticity of NTS neurons and their contribution for the development of cardiorespiratory dysfunctions, as observed in neurogenic hypertension, obstructive sleep apnea and metabolic disorders.
    Frontiers in physiology. 01/2014; 5:238.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+)-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.
    PLoS ONE 01/2014; 9(2):e88161. · 3.53 Impact Factor