Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4.

MGC-Department of Human Genetics, Sylvius Laboratory, Leiden University, The Netherlands.
Cell (Impact Factor: 33.12). 12/1996; 87(3):543-52.
Source: PubMed

ABSTRACT Genes for familial hemiplegic migraine (FHM) and episodic ataxia type-2 (EA-2) have been mapped to chromosome 19p13. We characterized a brain-specific P/Q-type Ca2+ channel alpha1-subunit gene, CACNL1A4, covering 300 kb with 47 exons. Sequencing of all exons and their surroundings revealed polymorphic variations, including a (CA)n-repeat (D19S1150), a (CAG)n-repeat in the 3'-UTR, and different types of deleterious mutations in FHM and EA-2. In FHM, we found four different missense mutations in conserved functional domains. One mutation has occurred on two different haplotypes in unrelated FHM families. In EA-2, we found two mutations disrupting the reading frame. Thus, FHM and EA-2 can be considered as allelic channelopathies. A similar etiology may be involved in common types of migraine.

  • Journal of the American Society for Mass Spectrometry 06/2015; 26(6):853-861. DOI:10.1007/s13361-015-1136-8 · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Familial hemiplegic migraine type 1 (FHM1) is caused by gain-of-function mutations in CaV2.1 (P/Q-type) Ca(2+) channels. Knockin (KI) mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD) in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca(2+) influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca(2+) dependence of the excitatory postsynaptic current were similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca(2+) influx at voltages sub-threshold for action potential generation.
    Frontiers in Cellular Neuroscience 02/2015; 9. DOI:10.3389/fncel.2015.00008 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To explain cognitive and memory difficulties observed in some familial hemiplegic migraine (FHM) patients, we examined hippocampal neurotransmission and plasticity in knock-in mice expressing the FHM type 1 (FHM1) R192Q gain-of function mutation in the CACNA1A gene that encodes the α1A subunit of neuronal CaV2.1 channels. We determined stimulus intensity-response curves for anterior commissure-evoked hippocampal CA1 field potentials in strata pyramidale and radiatum and assessed neuroplasticity by inducing long-term potentiation (LTP) and long-term depression (LTD) in anesthetized mice in vivo. We also studied learning and memory using contextual fear-conditioning, Morris water maze, and novel object recognition tests. Hippocampal field potentials were significantly enhanced in R192Q mice compared with wild-type controls. Stimulus intensity-response curves were shifted to the left and displayed larger maxima in the mutants. LTP was augmented by twofold in R192Q mice, whereas LTD was unchanged compared with wild-type mice. R192Q mice showed significant spatial memory deficits in contextual fear-conditioning and Morris water maze tests compared with wild-type controls. Novel object recognition was not impaired in R192Q mice; however, mice carrying the more severe S218L CACNA1A mutation showed marked deficits in this test, suggesting a genotype-phenotype relationship. Thus, whereas FHM1 gain-of-function mutations enhance hippocampal excitatory transmission and LTP, learning and memory are paradoxically impaired, providing a possible explanation for cognitive changes detected in FHM. Data suggest that abnormally enhanced plasticity can be as detrimental to efficient learning as reduced plasticity and highlight how genetically enhanced neuronal excitability may impact cognitive function. Copyright © 2015 the authors 0270-6474/15/353397-06$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 02/2015; 35(8):3397-3402. DOI:10.1523/JNEUROSCI.2630-14.2015 · 6.75 Impact Factor