Pharmacologically novel GABA receptor in human dorsal root ganglion neurons.

Neurophysiology Laboratory, Veteran's Administration Medical Center, Miami, Florida, USA.
Journal of Neurophysiology (Impact Factor: 3.04). 12/1996; 76(5):3555-8.
Source: PubMed

ABSTRACT 1. Whole cell voltage-clamp studies of gamma-aminobutyric acid (GABA) receptors were performed on large (> 80 microns) cultured human dorsal root ganglion (DRG) neurons. 2. GABA and pentobarbital sodium when applied in micromolar concentrations evoked inward Cl- currents in DRG neurons voltage clamped at negative membrane potentials. 3. Diazepam (10 microM) and pentobarbital (10 microM) upmodulated the GABA current by approximately 149 and 168%, respectively. 4. The GABA currents in human DRG cells were unaffected by the classical GABA antagonists picrotoxin and bicuclline (100 microM). In contrast, the GABA responses evoked in adult rat DRG cells cultured in an identical manner were inhibited by both antagonists. The glycine receptor antagonist strychnine (100 microM) did not alter GABA currents in human DRG cells. 5. Human DRG cells did not respond to glycine (10-100 microM) or taurine (10-100 microM). The GABAB agonist baclofen had no effect on the holding current when patch pipettes were filled with 130 mM KCl. The GABAB antagonists saclofen applied either alone or with GABA was without effect. 6. The differences between the GABA receptors described here and GABA receptors in other species may reflect the presence of receptor subunits unique to human DRG cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sensory feedback is critical for normal locomotion and adaptation to external perturbations during movement. Feedback provided by group Ia afferents influences motor output both directly through monosynaptic connections and indirectly through spinal interneuronal circuits. For example, the circuit responsible for reciprocal inhibition, which acts to prevent co-contraction of antagonist flexor and extensor muscles, is driven by Ia afferent feedback. Additionally, circuits mediating presynaptic inhibition can limit Ia afferent synaptic transmission onto central neuronal targets in a task-specific manner. These circuits can also be activated by stimulation of proprioceptive afferents. Rodent locomotion rapidly matures during postnatal development; therefore we assayed the functional status of reciprocal and presynaptic inhibitory circuits of mice at birth and compared responses to observations made after one week of postnatal development. Using extracellular physiological techniques from isolated and hemisected spinal cord preparations, we demonstrate that Ia afferent-evoked reciprocal inhibition is as effective at blocking antagonist motor neuron activation at birth as at one week postnatal. In contrast, at birth conditioning stimulation of muscle nerve afferents failed to evoke presynaptic inhibition sufficient to block functional transmission at synapses between Ia afferents and motor neurons, even though dorsal root potentials could be evoked by stimulating the neighboring dorsal root. Presynaptic inhibition at this synapse was readily observed, however, at the end of the first postnatal week. These results indicate Ia afferent feedback from the periphery to central spinal circuits is only weakly gated at birth, which may provide enhanced sensitivity to peripheral feedback during early postnatal experiences.
    Journal of Neurophysiology 01/2013; 109(8). DOI:10.1152/jn.00783.2012 · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biological differences in sensory processing between human and model organisms may present significant obstacles to translational approaches in treating chronic pain. To better understand the physiology of human sensory neurons, we performed whole-cell patch-clamp recordings from 141 human dorsal root ganglion (hDRG) neurons from five young adult donors without chronic pain. Nearly all small diameter hDRG neurons (<50 μm) displayed an inflection on the descending slope of the action potential, a defining feature of rodent nociceptive neurons. A high proportion of hDRG neurons were responsive to the algogens allyl isothiocyanate (AITC) and ATP, as well as the pruritogens histamine and chloroquine. We show that a subset of hDRG neurons responded to the inflammatory compounds bradykinin and prostaglandin E2 with action potential discharge and show evidence of sensitization including lower rheobase. Compared to electrically-evoked action potentials, chemically-induced action potentials were triggered from less depolarized thresholds and showed distinct after-hyperpolarization kinetics. These data indicate that most small/medium hDRG neurons can be classified as nociceptors, that they respond directly to compounds that produce pain and itch, and can be activated and sensitized by inflammatory mediators. The use of hDRG neurons as preclinical vehicles for target validation is discussed.
    Pain 06/2014; 155(9). DOI:10.1016/j.pain.2014.06.017 · 5.84 Impact Factor
  • Pain 09/2014; 155(9). DOI:10.1016/j.pain.2014.07.010 · 5.84 Impact Factor