Achondrogenesis type 1B.

Department of Pediatrics, University Children's Hospital, Zurich, Switzerland.
Journal of Medical Genetics (Impact Factor: 5.64). 12/1996; 33(11):957-61. DOI: 10.1136/jmg.33.11.957
Source: PubMed
Download full-text


Available from: Andrea Superti-Furga, Jan 01, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in diastrophic dysplasia sulfate transporter (DTDST) cause a spectrum of autosomal recessive chondrodysplasias. In decreasing order of severity, they include processes designated as achondrogenesis type IB (ACG-1B), atelosteogenesis type II (AO2), diastrophic dysplasia (DTD), diastrophic dysplasia variant (DTDv), and recessively inherited multiple epiphyseal dysplasia (rMED). This is the first report of an extended family with unequivocally distinct phenotypes on the DTDST spectrum. Two siblings have DTDv and their first cousin had AO2. They all share the common Finnish mutation (IVS1 + 2C>T). The two patients with DTDv have the previously reported R279W extracellular domain missense mutation. The second mutation in the patient with AO2 is c.172delA, a deletion of one nucleotide causing a previously unreported frameshift mutation. This is the first published case of an individual with a frameshift mutation combined with the Finnish mutation. These three patients provide an opportunity, in concert with a review of previous literature, to further examine the genotype-phenotype correlation of DTDST. Analysis suggests that, while the DTDST family of disorders contains at least seven different conditions, mutations in the DTDST gene, in fact, appear to cause a phenotypic continuum. Furthermore, DTDST genotype alone is an imperfect predictor of clinical severity along this continuum.
    American Journal of Medical Genetics Part A 12/2010; 152A(12):3043-50. DOI:10.1002/ajmg.a.33736 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the DTDST gene can result in a family of skeletal dysplasia conditions which comprise two lethal disorders, achondrogenesis type 1B (ACG1B) and atelosteogenesis type 2 (AO2); and two non-lethal disorders, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia (rMED). The gene product is a sulfate-chloride exchanger of the cell membrane. Inactivation of the sulfate exchanger leads to intracellular sulfate depletion and to the synthesis of undersulfated proteoglycans in susceptible cells such as chondrocytes and fibroblasts. Genotype-phenotype correlations are recognizable, with mutations predicting a truncated protein or a non-conservative amino acid substitution in a transmembrane domain giving the severe phenotypes, and non-transmembrane amino acid substitutions and splice site mutations giving the milder phenotypes. The clinical phenotype is modulated strictly by the degree of residual activity. Over 30 mutations have been observed, including 22 novel mutations reported here. The most frequent mutation, 862C>T (R279W), is a mild mutation giving the rMED phenotype when homozygous and mostly DTD when compounded; occurrence at a CpG dinucleotide and its panethnic distribution suggest independent recurrence. Mutation IVS1+2T>C is the second most common mutation, but is very frequent in Finland. It produces low levels of correctly spliced mRNA, and results in DTD when homozygous. Two other mutations, 1045-1047delGTT (V340del) and 558C>T (R178X), are associated with severe phenotypes and have been observed in multiple patients. Most other mutations are rare. Heterozygotes are clinically unaffected. When clinical samples are screened for radiologic and histologic features compatible with the ACG1B/AO2/DTD/rMED spectrum prior to analysis, the mutation detection rate is high (over 90% of alleles), and appropriate genetic counseling can be given. The sulfate uptake or sulfate incorporation assays in cultured fibroblasts have largely been replaced by mutation analysis, but may still be useful in cases where mutation analysis is not informative. Although supplementation of patients' cultured cells with thiols may bypass the transporter defect and enhance sulfation of proteoglycans, therapeutic approaches are not yet available. Mouse models for this and other disorders of sulfate metabolism are being developed to help in developing therapeutic treatments.
    Human Mutation 07/2001; 17(3):159-71. DOI:10.1002/humu.1 · 5.05 Impact Factor
  • Pediatric Radiology 01/2002; 31(12):893-4. DOI:10.1007/s002470100017 · 1.65 Impact Factor