PCR differentiation of commercial yeast strains using intron splice site primers.

Department of Plant Science, Waite Agricultural Research Institute, University of Adelaide, Australia.
Applied and Environmental Microbiology (Impact Factor: 3.95). 01/1997; 62(12):4514-20.
Source: PubMed

ABSTRACT The increased use of pure starter cultures in the wine industry has made it necessary to develop a rapid and simple identification system for yeast strains. A method based upon the PCR using oligonucleotide primers that are complementary to intron splice sites has been developed. Since most introns are not essential for gene function, introns have evolved with minimal constraint. By targeting these highly variable sequences, the PCR has proved to be very effective in uncovering polymorphisms in commercial yeast strains. The speed of the method and the ability to analyze many samples in a single day permit the monitoring of specific yeast strains during fermentations. Furthermore, the simplicity of the technique, which does not require the isolation of DNA, makes it accessible to industrial laboratories that have limited molecular expertise and resources.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: The aim of this work was the selection of six polymorphic microsatellite loci for their use as molecular markers in the identification, typification and genetic differentiation of S. cerevisiae strains.Methods and Results: The selection was undertaken following a search of the genomic DNA database of Saccharomyces cerevisiae for simple tandem repeat sequences (microsatellites) of di- and trinucleotides. The genetic variability generated by these markers was evaluated in 51 isolates. The discriminatory power produced by combining the information obtained by the six microsatellites was very high. A total of 57 alleles, which generated 44 genotypes, were found.Conclusions, Significance and Impact of the Study: The multiple analysis of microsatellites proved to be a powerful and agile tool for analysing the genome of S. cerevisiae populations.
    Letters in Applied Microbiology 07/2008; 33(6):461 - 466. · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterization of yeast populations and genetic polymorphism of Saccharomyces cerevisiae strains collected during the short fermentative cycles from the spontaneous fermentations during the artisanal cachaça production. The prevalent S. cerevisiae strains were analysed by PFG and RAPD-PCR using primers EI1 and M13. The molecular analysis have showed a high degree of genetic polymorphism among the strains within a 24 h fermentative cycle. The genetic diversity observed in the S. cerevisiae strains may be occurring due to the existence of a large number of individual genotypes within the species. The unique characteristics of the cachaça fermentation process probably allows for a faster detection of molecular polymorphisms of yeast strains than other types of fermentations. Spontaneous fermentations to produce cachaça, due to their characteristics, are an excellent model for the study of molecular diversity of S. cerevisiae strains during the production of fermented beverages.
    Letters in Applied Microbiology 09/2001; 33(2):106-11. · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: En este estudio, se han utilizado tres métodos para identificar levaduras aisladas de la miel de Trás-os-Montes, Portugal. Se han identificado un total de 24 aislados usando una secuencia parcial del gen rRNA 26S (rDNA), los patrones de restricción generados de la región de los espaciadores transcritos internos (ITS1 e ITS2) del gen rRNA 5.8S (rDNA) y el kit API 20C AUX. Fueron identificadas nueve especies distintas de levaduras que representan seis géneros distintos. Entre las muestras aisladas de la miel, Rhodotorula mucilaginosa, Candida magnoliae y Zygosaccha-romyces mellis eran las especies predominantes. La secuencia parcial del rDNA 26S rindió los mejores resultados para la correcta identificación, seguida por el análisis del 5.8S-ITS. El kit comercial de identificación API 20C AUX. sólo identificó correctamente el 58% de los aislados. Se describen dos perfiles nuevos de 5.8S-ITS, correspondiendo a Trichosporon mucoides y Candida sorbosivorans.
    Archivos de Zootecnia 03/2010; 59(225):103-113.

Full-text (2 Sources)

Available from
May 16, 2014