Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment.

James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
Journal of Clinical Microbiology (Impact Factor: 4.23). 02/1997; 35(1):111-6.
Source: PubMed

ABSTRACT In specific-pathogen-free dogs experimentally infected with Borrelia burgdorferi by tick exposure, treatment with high doses of amoxicillin or doxycycline for 30 days diminished but failed to eliminate persistent infection. Although joint disease was prevented or cured in five of five amoxicillin- and five of six doxycycline-treated dogs, skin punch biopsies and multiple tissues from necropsy samples remained PCR positive and B. burgdorferi was isolated from one amoxicillin- and two doxycycline-treated dogs following antibiotic treatment. In contrast, B. burgdorferi was isolated from six of six untreated infected control dogs and joint lesions were found in four of these six dogs. Serum antibody levels to B. burgdorferi in all dogs declined after antibiotic treatment. Negative antibody levels were reached in four of six doxycycline- and four of six amoxicillin-treated dogs. However, in dogs that were kept in isolation for 6 months after antibiotic treatment was discontinued, antibody levels began to rise again, presumably in response to proliferation of the surviving pool of spirochetes. Antibody levels in untreated infected control dogs remained high.


Available from: Reinhard K Straubinger, Jun 02, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although most Lyme disease patients can be cured with antibiotics doxycycline or amoxicillin using 2-4 week treatment durations, some patients suffer from persistent arthritis or post-treatment Lyme disease syndrome. Why these phenomena occur is unclear, but possibilities include host responses, antigenic debris, or B. burgdorferi organisms remaining despite antibiotic therapy. In vitro, B. burgdorferi developed increasing antibiotic tolerance as morphology changed from typical spirochetal form in log phase growth to variant round body and microcolony forms in stationary phase. B. burgdorferi appeared to have higher persister frequencies than E. coli as a control as measured by SYBR Green I/propidium iodide (PI) viability stain and microscope counting. To more effectively eradicate the different persister forms tolerant to doxycycline or amoxicillin, drug combinations were studied using previously identified drugs from an FDA-approved drug library with high activity against such persisters. Using a SYBR Green/PI viability assay, daptomycin-containing drug combinations were the most effective. Of studied drugs, daptomycin was the common element in the most active regimens when combined with doxycycline plus either beta-lactams (cefoperazone or carbenicillin) or an energy inhibitor (clofazimine). Daptomycin plus doxycycline and cefoperazone eradicated the most resistant microcolony form of B. burgdorferi persisters and did not yield viable spirochetes upon subculturing, suggesting durable killing that was not achieved by any other two or three drug combinations. These findings may have implications for improved treatment of Lyme disease, if persistent organisms or detritus are responsible for symptoms that do not resolve with conventional therapy. Further studies are needed to validate whether such combination antimicrobial approaches are useful in animal models and human infection.
    PLoS ONE 01/2015; 10(3):e0117207. DOI:10.1371/journal.pone.0117207 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decorin binding proteins A and B (DbpA and B) of Borrelia burgdorferi are of critical importance for the virulence of the spirochete. The objective of the present study was to further clarify the contribution of DbpA and B to development of arthritis and persistence of B. burgdorferi after antibiotic treatment in a murine model of Lyme borreliosis. With that goal, mice were infected with B. burgdorferi strains expressing either DbpA or DbpB, or both DbpA and B, or with a strain lacking the adhesins. Arthritis development was monitored up to 15 weeks after infection, and bacterial persistence was studied after ceftriaxone and immunosuppressive treatments. Mice infected with the B. burgdorferi strain expressing both DbpA and B developed an early and prominent joint swelling. In contrast, while strains that expressed DbpA or B alone, or the strain that was DbpA and B deficient, were able to colonize mouse joints, they caused only negligible joint manifestations. Ceftriaxone treatment at two or six weeks of infection totally abolished joint swelling, and all ceftriaxone treated mice were B. burgdorferi culture negative. Antibiotic treated mice, which were immunosuppressed by anti-TNF-alpha, remained culture negative. Importantly, among ceftriaxone treated mice, B. burgdorferi DNA was detected by PCR uniformly in joint samples of mice infected with DbpA and B expressing bacteria, while this was not observed in mice infected with the DbpA and B deficient strain. In conclusion, these results show that both DbpA and B adhesins are crucial for early and prominent arthritis development in mice. Also, post-treatment borrelial DNA persistence appears to be dependent on the expression of DbpA and B on B. burgdorferi surface. Results of the immunosuppression studies suggest that the persisting material in the joints of antibiotic treated mice is DNA or DNA containing remnants rather than live bacteria.
    PLoS ONE 01/2015; 10(3):e0121512. DOI:10.1371/journal.pone.0121512 · 3.53 Impact Factor
  • Source
    Archives of Biological Sciences 01/2013; 65(2):533-547. DOI:10.2298/ABS1302533V · 0.61 Impact Factor