Article

Pontine nitric oxide modulates acetylcholine release, rapid eye movement sleep generation, and respiratory rate.

Department of Anesthesia, Pennsylvania State University College of Medicine, Hershey 17033, USA.
Journal of Neuroscience (Impact Factor: 6.91). 02/1997; 17(2):774-85.
Source: PubMed

ABSTRACT Pontine cholinergic neurotransmission is known to play a key role in the regulation of rapid eye movement (REM) sleep and to contribute to state-dependent respiratory depression. Nitric oxide (NO) has been shown to alter the release of acetylcholine (ACh) in a number of brain regions, and previous studies indicate that NO may participate in the modulation of sleep/wake states. The present investigation tested the hypothesis that inhibition of NO synthase (NOS) within the medial pontine reticular formation (mPRF) of the unanesthetized cat would decrease ACh release, inhibit REM sleep, and prevent cholinergically mediated respiratory depression. Local NOS inhibition by microdialysis delivery of N(G)-nitro-L-arginine (NLA) significantly reduced ACh release in the cholinergic cell body region of the pedunculopontine tegmental nucleus and in the cholinoceptive mPRF. A second series of experiments demonstrated that mPRF microinjection of NLA significantly reduced the amount of REM sleep and the REM sleep-like state caused by mPRF injection of the acetylcholinesterase inhibitor neostigmine. Duration but not frequency of REM sleep epochs was significantly decreased by mPRF NLA administration. Injection of NLA into the mPRF before neostigmine injection also blocked the ability of neostigmine to decrease respiratory rate during the REM sleep-like state. Taken together, these findings suggest that mPRF NO contributes to the modulation of ACh release, REM sleep, and breathing.

0 Bookmarks
 · 
50 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders.
    Brain sciences. 03/2014; 4(1):150-201.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extending our previous observations, we have shown on HaCat cells that melatonin, at ~10-9 M concentration, transiently raises not only the expression of the neuronal nitric oxide synthase (nNOS) mRNA, but also the nNOS protein synthesis and the nitric oxide oxidation products, nitrite and nitrate. Interestingly, from the cell bioenergetic point of view, the activated NO-related chemistry induces a mild decrease of the oxidative phosphorylation (OXPHOS) efficiency, paralleled by a depression of the mitochondrial membrane potential. The OXPHOS depression is apparently balanced by glycolysis. The mitochondrial effects described have been detected only at nanomolar concentration of melatonin and within a time window of a few hours' incubation; both findings compatible with the melatonin circadian cycle.
    International Journal of Molecular Sciences 01/2013; 14(6):11259-76. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.
    Proceedings of the National Academy of Sciences 10/2013; · 9.81 Impact Factor

Full-text

View
0 Downloads
Available from