Additional data about thermolysin specificity in buffer- and glycerol-containing media.

Laboratoire de Technologie Enzymatique, URA 1442 CNRS, Compiègne University, France.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 02/1997; 1337(1):143-8. DOI: 10.1016/S0167-4838(96)00142-2
Source: PubMed

ABSTRACT Synthesis and use of various substrates permit an improved approach to thermolysin-peptide recognition and elucidation of several new criteria affecting enzyme specificity. Nature and position of the recognized residue, role of adjacent amino acids, lateral chain hydrophobicity, and volume and length of peptides were all considered. Hydrolysis reactions were also carried out in the presence of glycerol; the effect of microenvironment modifications was quantitative, for example in inducing variations in catalytic reaction rates, and also qualitative, such as in influencing affinity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermolysin is a zinc-metalloendopeptidase secreted by the gram-positive thermophilic bacterium Bacillus thermoproteolyticus. Thermolysin belongs to the gluzinicin family of enzymes, which is selectively inhibited by Steptomyces metalloproteinase inhibitor (SMPI). Very little is known about the interaction between SMPI and thermolysin. Knowledge about the protein-protein interactions is very important for designing new thermolysin inhibitors with possible industrial or pharmaceutical applications. In the present study, two binding modes between SMPI and thermolysin were studied by 2300 picoseconds (ps) of comparative molecular dynamics (MD) simulations and calculation of the free energy of binding using the molecular mechanics-Poisson-Boltmann surface area (MM/PBSA) method. One of the positions, the 'horizontal arrow head docking' (HAHD) was similar to the previously proposed binding mode by Tate et al. (Tate, S., Ohno, A., Seeram, S. S., Hiraga, K., Oda, K., and Kainosho, M. J. Mol. Biol. 282, 435-446 (1998)). The other position, the 'vertical arrow head docking' (VAHD) was obtained by a manual docking guided by the shape and charge distribution of SMPI and the binding pocket of thermolysin. The calculations showed that SMPI had stronger interactions with thermolysin in the VAHD than in the HAHD complex, and the VAHD complex was considered more realistic than the HAHD complex. SMPI interacted with thermolysin not only at the active site but had auxiliary binding sites contributing to proper interactions. The VAHD complex can be used for designing small molecule inhibitors mimicking the SMPI-thermolysin binding interfaces.
    Journal of biomolecular structure & dynamics 05/2005; 22(5):521-31. · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc containing peptidases are widely distributed in nature and have important roles in many physiological processes. M4 family comprises numerous zinc-dependent metallopeptidases that hydrolyze peptide bonds. A large number of these enzymes are implicated as virulence factors of the microorganisms that produce them and are therefore potential drug targets. Some enzymes of the family are able to function at the extremes of temperatures, and some function in organic solvents. Thereby enzymes of the thermolysin family have an innovative potential for biotechnological applications.
    Chemical Biology &amp Drug Design 02/2009; 73(1):7-16. · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A bioinformatics analysis to screen for high-potential sources of angiotensin converting enzyme (ACE) inhibitory peptides was conducted in the area of insect muscle proteins. Vertebrate muscle proteins are reported as good sources of ACE inhibitory peptides, while the research on invertebrate muscle proteins is limited. A phylogenetic tree constructed with actin sequences of both vertebrate and invertebrate species indicated a high homology. Furthermore, a quantitative in silico ACE inhibition analysis suggested that actin proteins of invertebrates have potentials as new sources of ACE inhibitory peptides. On one insect, Bombyx mori, a more detailed in silico analysis was done followed by a small experimental study. The in silico analysis indicated B. mori as a high-potential source of ACE inhibitory peptides and this was supported by the ACE inhibitory activity of the partially purified actin preparation. In conclusion, in food science, in silico analysis can be used as fast initial screening tool to look for high-potential sources of ACE inhibitory peptides and other peptidic bioactivities.
    Peptides 03/2009; 30(3):575-82. · 2.52 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014