Jaw and branchial arch mutants in zebrafish. II: Anterior arches and cartilage differentiation

Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, Tübingen, Germany.
Development (Impact Factor: 6.27). 01/1997; 123:345-56.
Source: PubMed

ABSTRACT In a large scale screen for mutants that affect the early development of the zebrafish, 109 mutants were found that cause defects in the formation of the jaw and the more posterior pharyngeal arches. Here we present the phenotypic description and results of the complementation analysis of mutants belonging to two major classes: (1) mutants with defects in the mandibular and hyoid arches and (2) mutants with defects in cartilage differentiation and growth in all arches. Mutations in four of the genes identified during the screen show specific defects in the first two arches and leave the more posterior pharyngeal arches largely unaffected (schmerle, sucker, hoover and sturgeon). In these mutants ventral components of the mandibular and hyoid arches are reduced (Meckel's cartilage and ceratohyal cartilage) whereas dorsal structures (palatoquadrate and hyosymplectic cartilages) are of normal size or enlarged. Thus, mutations in single genes cause defects in the formation of first and second arch structures but also differentially affect development of the dorsal and ventral structures within one arch. In 27 mutants that define at least 8 genes, the differentiation of cartilage and growth is affected. In hammerhead mutants particularly the mesodermally derived cartilages are reduced, whereas jellyfish mutant larvae are characterized by a severe reduction of all cartilaginous elements, leaving only two pieces in the position of the ceratohyal cartilages. In all other mutant larvae all skeletal elements are present, but consist of smaller and disorganized chondrocytes. These mutants also exhibit shortened heads and reduced pectoral fins. In homozygous knorrig embryos, tumor-like outgrowths of chondrocytes occur along the edges of all cartilaginous elements. The mutants presented here may be valuable tools for elucidating the genetic mechanisms that underlie the development of the mandibular and the hyoid arches, as well as the process of cartilage differentiation.

Download full-text


Available from: Robert N Kelsh, Aug 04, 2015
  • Source
    • "We next performed mcc loss-of-function studies using two antisense morpholino (MO) oligonucleotides: one targeting the mcc ATG (MO1) and the other spanning the splice junction between intron 6 and exon 7 (MO2) (see Fig. 1A). Embryos injected with either MO display varying degrees of microcephaly/microphthalmia, often with a shift in head position and loss of tissue anterior to the eyes – a 'hammerhead' phenotype (Piotrowski et al., 1996) – tightly packed somites and an embryonic axis that is shorter and ventrally curved from anterior to posterior compared with wild-type controls at 1 day post fertilization (dpf) (Fig. 2A; supplementary material Fig. S2A). "
    [Show abstract] [Hide abstract]
    ABSTRACT: During vertebrate gastrulation, a complex set of mass cellular rearrangements shapes the embryonic body plan and appropriately positions the organ primordia. In zebrafish and Xenopus, convergence and extension (CE) movements simultaneously narrow the body axis mediolaterally and elongate it from head to tail. This process is governed by polarized cell behaviors that are coordinated by components of the non-canonical, β-catenin-independent Wnt signaling pathway, including Wnt5b and the transmembrane planar cell polarity (PCP) protein Vangl2. However, the intracellular events downstream of Wnt/PCP signals are not fully understood. Here, we show that zebrafish mutated in colorectal cancer (mcc), which encodes an evolutionarily conserved PDZ domain-containing putative tumor suppressor, is required for Wnt5b/Vangl2 signaling during gastrulation. Knockdown of mcc results in CE phenotypes similar to loss of vangl2 and wnt5b, whereas overexpression of mcc robustly rescues the depletion of wnt5b, vangl2 and the Wnt5b tyrosine kinase receptor ror2. Biochemical experiments establish a direct physical interaction between Mcc and the Vangl2 cytoplasmic tail. Lastly, CE defects in mcc morphants are suppressed by downstream activation of RhoA and JNK. Taken together, our results identify Mcc as a novel intracellular effector of non-canonical Wnt5b/Vangl2/Ror2 signaling during vertebrate gastrulation.
    Development 09/2014; 141(18):3505-16. DOI:10.1242/dev.114033 · 6.27 Impact Factor
  • Source
    • "The mechanisms involved in skeletal development are highly conserved between zebrafish and the mammalian species, such as the expression and regulation of the major signaling transduction pathways involved in bone development [13] [14] [15]. In the past, a number of mutations that affect zebrafish bone development have been identified [16] [17]. Some of them are highly conserved in vertebrate species (sequence, expression profiles and function). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Using the fluorescent dyes calcein and alcian blue, we stained the F3 generation of chemically (ENU) mutagenized zebrafish embryos and larvae, and screened for mutants with defects in bone development. We identified a mutant line, bone calcification slow (bcs), which showed delayed axial vertebra calcification during development. Before 4-5 days post-fertilization (dpf), the bcs embryos did not display obvious abnormalities in bone development (i.e., normal number, size and shape of cartilage and vertebrae). At 5-6 dpf, when vertebrae calcification starts, bcs embryos began to show defects. At 7 dpf, for example, in most of the bcs embryos examined, calcein staining revealed no signals of vertebrae mineralization, whereas during the same developmental stages, 2-14 mineralized vertebrae were observed in wild-type animals. Decreases in the number of calcified vertebrae were also observed in bcs mutants when examined at 9 and 11 dpf, respectively. Interestingly, by 13 dpf the defects in bcs mutants were no longer evident. There were no significant differences in the number of calcified vertebrae between wild-type and mutant animals. We examined the expression of bone development marker genes (e.g., Sox9b, Bmp2b, and Cyp26b1, which play important roles in bone formation and calcification). In mutant fish, we observed slight increases in Sox9b expression, no alterations in Bmp2b expression, but significant increases in Cyp26b1 expression. Together, the data suggest that bcs delays axial skeletal calcification, but does not affect bone formation and maturation.
    Biochemical and Biophysical Research Communications 09/2013; 440(1). DOI:10.1016/j.bbrc.2013.09.043 · 2.28 Impact Factor
  • Source
    • "In this study, we have mapped the spatio-temporal distribution of a variety of GAG epitopes in the developing skeleton of larvae between 3 and 8 dpf, when the early cartilages of the skull and vertebral column are first established. The primarily cartilaginous tissues that we have examined have all been well studied (for example , Kimmel et al., 1995; Piotrowski et al., 1996; Schilling et al., 1996; Bird and Mabee, 2003; Haga et al., 2009) and show many parallels, from a developmental perspective, with those of evolutionarily more advanced species. We show that the GAG composition of the distinct skeletal tissues, and the subtly distinct expression patterns of CS sulfation that occur during zebrafish skeletogenesis, are of comparable complexity to those occurring in higher vertebrates. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The zebrafish is an important developmental model. Surprisingly, there are few studies that describe the glycosaminoglycan composition of its extracellular matrix during skeletogenesis. Glycosaminoglycans on proteoglycans contribute to the material properties of musculo skeletal connective tissues, and are important in regulating signalling events during morphogenesis. Sulfation motifs within the chain structure of glycosaminoglycans on cell-associated and extracellular matrix proteoglycans allow them to bind and regulate the sequestration/presentation of bioactive signalling molecules important in musculo-skeletal development. Results: We describe the spatio-temporal expression of different glycosaminoglycan moieties during zebrafish skeletogenesis with antibodies recognising (1) native sulfation motifs within chondroitin and keratan sulfate chains, and (2) enzyme-generated neoepitope sequences within the chain structure of chondroitin sulfate (i.e., 0-, 4-, and 6-sulfated isoforms) and heparan sulfate glycosaminoglycans. We show that all the glycosaminoglycan moieties investigated are expressed within the developing skeletal tissues of larval zebrafish. However, subtle changes in their patterns of spatio-temporal expression over the period examined suggest that their expression is tightly and dynamically controlled during development. Conclusions: The subtle differences observed in the domains of expression between different glycosaminoglycan moieties suggest differences in their functional roles during establishment of the primitive analogues of the skeleton. Developmental Dynamics 242:778–789, 2013. © 2013 Wiley Periodicals, Inc. Key Findings The developing zebrafish skeleton expresses many different glycosaminoglycan modifications. Multiple different glycosaminoglycan epitopes are dynamically expressed in the craniofacial skeleton. Expression of chondroitin sulfate moieties are dynamically expressed in the vertebral column and precede mineralisation.
    Developmental Dynamics 06/2013; 242(6). DOI:10.1002/dvdy.23970 · 2.67 Impact Factor
Show more