Article

Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei.

VTT, Chemical Technology, Finaland.
Protein Science (Impact Factor: 2.74). 03/1997; 6(2):294-303. DOI: 10.1002/pro.5560060204
Source: PubMed

ABSTRACT Three-dimensional solution structures for three engineered, synthetic CBDs (Y5A, Y31A, and Y32A) of cellobiohydrolase I (CBHI) from Trichoderma reesei were studied with nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. According to CD measurements the antiparallel beta-sheet structure of the CBD fold was preserved in all engineered peptides. The three-dimensional NMR-based structures of Y31A and Y32A revealed only small local changes due to mutations in the flat face of CBD, which is expected to bind to crystalline cellulose. Therefore, the structural roles of Y31 and Y32 are minor, but their functional importance is obvious because these mutants do not bind strongly to cellulose. In the case of Y5A, the disruption of the structural framework at the N-terminus and the complete loss of binding affinity implies that Y5 has both structural and functional significance. The number of aromatic residues and their precise spatial arrangement in the flat face of the type I CBD fold appears to be critical for specific binding. A model for the CBD binding in which the three aligned aromatic rings stack onto every other glucose ring of the cellulose polymer is discussed.

0 Bookmarks
 · 
58 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We prepared two cellulose hydrates, Na-cellulose IV and cellulose II hydrate, along with their respective anhydrous forms, cellulose II and II′, from microcrystalline cellulose. X-ray diffractometry analysis showed that the structure of the hydrophobic stacking sheet was conserved in the samples, but the distance between the sheets was in the order: cellulose II hydrate > Na-cellulose IV > cellulose II and II′. The hydrates exhibited an expanded structure compared with the anhydrous form from the incorporation of hydrate water, and cellulose II hydrate contained more hydrate water than Na-cellulose IV. Enzymatic hydrolysis of the samples was carried out at 37 °C using solutions comprising a mixture of cellulase and β-glucosidase. The hydrates were hydrolyzed more efficiently than the anhydrous forms, and cellulose II hydrate showed a more efficient hydrolysis than Na-cellulose IV. This result also agrees well with the enzymatic adsorption properties of each sample, where the samples that adsorbed the greater amount of enzyme showed a higher degradability. The results obtained in this study provide useful knowledge on controlling the biodegradability of cellulose by converting its structure.
    Cellulose 19(3). · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellobiohydrolases hydrolyze cellulose releasing cellobiose units. They are very important for a number of biotechnological applications, such as, for example, production of cellulosic ethanol and cotton fiber processing. The Trichoderma cellobiohydrolase I (CBH1 or Cel7A) is an industrially important exocellulase. It exhibits a typical two domain architecture, with a small C-terminal cellulose-binding domain and a large N-terminal catalytic core domain, connected by an O-glycosylated linker peptide. The mechanism by which the linker mediates the concerted action of the two domains remains a conundrum. Here, we probe the protein shape and domain organization of the CBH1 of Trichoderma harzianum (ThCel7A) by small angle X-ray scattering (SAXS) and structural modeling. Our SAXS data shows that ThCel7A linker is partially-extended in solution. Structural modeling suggests that this linker conformation is stabilized by inter- and intra-molecular interactions involving the linker peptide and its O-glycosylations.
    Cellulose 20(4). · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A chitinase, from Pyrococcus furiosus, is a hyperthermophilic glycosidase that effectively hydrolyzes both α and β crystalline chitin. This chitinase has unique structural features; it contains two catalytic domains (AD1 and AD2) and two chitin-binding domains (ChBD1 and ChBD2). We have determined the structure of ChBD1, which significantly enhances the activity of the catalytic domains, by NMR spectroscopy. The overall structure of ChBD1 had a compact and globular architecture consisting of three antiparallel β-strands, similar to those of other proteins classified into carbohydrate-binding module (CBM) family 5. A mutagenesis experiment suggested three solvent-exposed aromatic residues (Tyr112, Trp113, and Tyr123) as the chitin-binding sites. The involvement of Tyr123, or the corresponding aromatic residues in other CBMs, has been demonstrated for the first time. This result indicates that the binding mode may be different from those of other chitin-binding domains in CBM family 5. In addition, the binding affinities of ChBD1 and ChBD2 were quite different, suggesting that the two ChBDs each play a different role in efficiently increasing the activities of AD1 and AD2.
    Journal of Biochemistry 11/2013; · 3.07 Impact Factor

Full-text (2 Sources)

Download
25 Downloads
Available from
Jun 4, 2014