Hippocampal Interneurons Express a Novel Form of Synaptic Plasticity

Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
Neuron (Impact Factor: 15.98). 03/1997; 18(2):295-305. DOI: 10.1016/S0896-6273(00)80269-X
Source: PubMed

ABSTRACT Individual GABAergic interneurons in hippocampus can powerfully inhibit more than a thousand excitatory pyramidal neurons. Therefore, control of interneuron excitability provides control over hippocampal networks. We have identified a novel mechanism in hippocampus that weakens excitatory synapses onto GABAergic interneurons. Following stimulation that elicits long-term potentiation at neighboring synapses onto excitatory cells, excitatory synapses onto inhibitory interneurons undergo a long-term synaptic depression (interneuron LTD; iLTD). Unlike most other forms of hippocampal synaptic plasticity, iLTD is not synapse specific: stimulation of an afferent pathway triggers depression not only of activated synapses but also of inactive excitatory synapses onto the same interneuron. These results suggest that high frequency afferent activity increases hippocampal excitability through a dual mechanism, simultaneously potentiating synapses onto excitatory neurons and depressing synapses onto inhibitory neurons.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cortical spreading depression (CSD) is characterized by reversible reduction of spontaneous and evoked electrical activity of the cerebral cortex. Experimental evidence suggests that CSD may modulate neural excitability and synaptic activity, with possible implications for long-term potentiation. Systemic factors like anesthetics and insulin-induced hypoglycemia can influence CSD propagation. In this study, we examined whether the post-CSD ECoG potentiation can be modulated by anesthetics and insulin-induced hypoglycemia. We found that awake adult rats displayed increased ECoG potentiation after CSD, as compared with rats under urethane+chloralose anesthesia or tribromoethanol anesthesia. In anesthetized rats, insulin-induced hypoglycemia did not modulate ECoG potentiation. Comparison of two cortical recording regions in awake rats revealed a similarly significant (p <0.05) potentiation effect in both regions, whereas in the anesthetized groups the potentiation was significant only in the recording region nearer to the stimulating point. Our data suggest that urethane+chloralose and tribromoethanol anesthesia modulate the post-CSD potentiation of spontaneous electrical activity in the adult rat cortex, and insulin-induced hypoglycemia does not modify this effect. Data may help to gain a better understanding of excitability-dependent mechanisms underlying CSD-related neurological diseases. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Neuroscience Letters 02/2015; 592. DOI:10.1016/j.neulet.2015.02.018 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteases (MMP) play a pivotal role in long-term synaptic plasticity, learning, and memory. The roles of different MMP subtypes are emerging, but the proteolytic activity of certain MMPs was shown to support these processes through the structural and functional modification of hippocampal Schaeffer collateral and mossy fiber (MF) synapses. However, certain patterns of synaptic activity are additionally associated with non-synaptic changes, such as the scaling of neuronal excitability. However, the extent to which MMPs affect this process remains unknown. We determined whether MMP activity interferes with excitatory post-synaptic potential EPSP-to-spike (E-S) coupling under conditions of varying synaptic activity. We evoked short- and long-term synaptic plasticity at associational/commissural (A/C) synapses of CA3 pyramidal neurons and simultaneously recorded population spikes (PSs) and EPSPs in acute rat (P30-60) brain slices in the presence of various MMP inhibitors. We found that MMP inhibition significantly reduced E-S coupling and shortened the PS latency associated with 4× 100 Hz stimulation or paired burst activity of MF-CA3 and A/C synapses. Moreover, MMP inhibition interfered with the scaling of amplitude of measured signals during high-frequency trains, thus affecting the induction of long-term potentiation (LTP). The inhibition of L-type voltage-gated calcium channels with 20 µM nifedipine or GABA-A receptors with 1-30 µM picrotoxin did not occlude the effects of MMP inhibitors. However, MMP inhibition significantly reduced the LTP of NMDA receptor-mediated EPSPs. Finally, the analysis of LTP saturation with multiple single (1× 100 Hz) or packed (4× 100 Hz) trains indicated that MMPs support E-S coupling evoked by selected synaptic activity patterns and set the ceiling for tetanically evoked E-S LTP. In conclusion, the activity of MMPs, particularly MMP-3, regulated the magnitude of EPSPs and spike plasticity in the CA3 network and may affect information processing. Our data provide a novel link between MMP activity and neural excitability. Therefore, by limiting the number of firing neurons, MMP may functionally act beyond the synapse. © 2013 Wiley Periodicals, Inc.
    Hippocampus 02/2014; 24(2). DOI:10.1002/hipo.22205 · 4.30 Impact Factor
  • Source

Full-text (2 Sources)

Available from
Aug 29, 2014