Purification, structure and activity of three insect toxins from Buthus occitanus tunetanus venom.

Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, Belvédère, Tunisia.
Toxicon (Impact Factor: 2.92). 04/1997; 35(3):365-82. DOI: 10.1016/S0041-0101(96)00173-0
Source: PubMed

ABSTRACT One contractive and two depressant toxins active on insect were purified by high-performance liquid chromatography from the venom of Buthus occitanus tunetanus (Bot). The two depressant toxins, BotIT4 and BotIT5, differ only at position 6 (Arg for Lys) and are equally toxic to insects (LD50 to Blatella germanica = 110 ng/100 mg body weight). They show a strong antigenic cross-reaction with a depressive toxin from Leiurus quinquestriatus quinquestriatus (LqqIT2). The two toxins are able to inhibit with high affinity (K0.5 between 2 and 3 nM) the specific binding of the radioiodinated excitatory insect toxin (125I-AaHIT) on its receptor site on Periplaneta americana synaptosomal membranes. These toxins depolarize the cockroach axon, irreversibly block the action potential, and slow down and very progressively block the transmembrane transient Na+ current. The contracturant toxin BotIT1 is highly toxic to B. germanica (LD50 = 60 ng/ 100 mg body weight) and barely toxic to mice (LD50 = 1 microgram/20 g body weight) when injected intracerebroventricularly. It does not compete with 125I-AaHIT for its receptor site on P. americana synaptosomal membranes. On cockroach axon, BotIT1 develops plateau potentials and slows down the inactivation mechanism of the Na+ channels. Thus, BotIT1 belongs to the group of alpha insect-selective toxins and shows a strong sequence identity (> 90%) with Lqh alpha IT and LqqIII, two insect alpha-toxins previously purified from the venom of L. q. hebraeus and L. q. quinquestriatus. respectively.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nervous system of Periplaneta americana cockroach is used in a wide range of pharmacological studies, including electrophysiological techniques. This paper presents its role as a preparation in the development of toxinological studies in the following electrophysiological methods: double-oil-gap technique on isolated giant axon, patch-clamp on DUM (dorsal unpaired median) neurons, microelectrode technique in situ conditions on axon in connective and DUM neurons in ganglion, and single-fiber oil-gap technique on last abdominal ganglion synapse. At the end the application of cockroach synaptosomal preparation is mentioned.
    Journal of Toxicology 01/2012; 2012:143740.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To gain success in the evolutionary "arms race", venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Nav's) and thereby modify the excitability of muscle and nerve cells. Although more than a hundred α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Nav's is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that in spite of the small size and relatively rigid structure, these toxins possess modular organization from structural, functional and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable, and determines the taxon (mammal vs. insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of Nav's extracellular loops suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Nav's. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Nav's.
    Journal of Biological Chemistry 05/2013; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na(+)-, K(+)- and Ca(++)-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are now adays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na(+)-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K(+)-channels are normally pore blocking agents. The Ryanodine Ca(++)-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells.
    Toxicon 07/2013; · 2.92 Impact Factor